1 / 55

Behavioral Responses to Teacher Transfer Incentives: Results from a Randomized Experiment

Behavioral Responses to Teacher Transfer Incentives: Results from a Randomized Experiment. INVALSI Conference on Improving Education through Accountability and Evaluation: Lessons from Around the World Rome, Italy October 4, 2012

nelson
Download Presentation

Behavioral Responses to Teacher Transfer Incentives: Results from a Randomized Experiment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Behavioral Responses to Teacher Transfer Incentives: Results from a Randomized Experiment INVALSI Conference on Improving Education through Accountability and Evaluation: Lessons from Around the World Rome, Italy October 4, 2012 Steven Glazerman  Ali Protik  Bing-ru Teh  Julie Bruch Neil Seftor

  2. Policy Problem • Best teachers may not be working with the students who need them the most • Shift focus from improving productivity of the teacher workforce to composition • Big gaps in knowledge • Weak documentation of the policy problem • Lack of data on teacher transfer behavior • Lack of data on whether skills transfer • Controversy about teacher quality measures (value added)

  3. Policy Response: Talent Transfer Initiative • $20,000 transfer incentive • Identify highest-performing (HP) teachers • Use value-added analysis, three years of data • Three pools: elementary, MS math, MS language arts • Top 20% are “highest performing” • Identify potential “receiving schools” • Recruit transfer candidates, arrange interviews • Support transfer teachers, issue payments • HP teachers already in potential receiving schools get retention stipend of $10,000

  4. Research Questions • How do HP teachers respond to a monetary transfer incentive? • How do hard-to-staff schools respond to the opportunity to hire a HP teacher? • What impact do transfer teachers have in their new settings? • Did their skills transfer, i.e. were they portable? • Was “value added” the right metric?

  5. Summary of Findings to Date • Implementation • Filling vacancies was feasible • Large pool of candidates needed • Meaningful contrast achieved • Intermediate impacts • Increased experience and credentials slightly • No significant impact on climate or collegiality • No change in how students assigned to teachers • TTI transfers used less & provided more mentoring • Impact on test scores and retention • Will be public in the final report (2013)

  6. Study Design

  7. Experimental Design • Identify potential receiving schools with a vacancy in a targeted grade/subject • Unit of randomization = teacher team • Team types can be: • Elementary self-contained math and reading • Middle school math • Middle school English/language arts (ELA)

  8. Study Design, Illustration Randomization Block School A School B

  9. Study Design, Illustration Randomly assign teacher teams (grade within school) to treatment or control Focal Teachers School A School B

  10. Data

  11. Ten Large, Diverse Districts in the Study Cohort 1: seven districts in five states Cohort 2: three districts in two more states

  12. Data • Primary Data Collection: Surveys • Candidates • Receiving school teachers in study grades • Receiving school principals • Secondary Data • District-provided test scores and demographics • School-provided teacher rosters

  13. Sample (Cohort 1) • 7 districts • Large, diverse • 5 county, 2 city • 1,012 transfer candidates • 63 transfers from 51 sending schools • 86 receiving schools • 124 teams randomized • 15,266 students • Below average prior achievement • 6% white, 48% African American, 72% free lunch

  14. Behavioral Response to Incentives: Implementation Findings

  15. Findings on Response to Incentives • Low takeup rates, most candidates do not apply • Not too low to fill positions (90% filled) • Hard to predict who transfers

  16. Response to Incentives in 7 Districts: Takeup Rates

  17. Types of Transfers by Change in School Achievement Ranks Before and After Transfer N = 63

  18. Types of Transfers by Change in School Poverty Ranks Before and After Transfer N = 63

  19. Who Filled the Vacancies?

  20. Behavioral Response Within the Receiving Schools:Intermediate Impacts

  21. Findings on Impacts on School Dynamics • Survey questions on degree of collaboration, mutual trust, or sharing ideas: no evidence of impact • Differential assignment of students to teachers: mixed evidence of impact • Mentoring and leadership: treatment led to more mentoring provided, less mentoring used

  22. Mentoring Received and Provided to Others Receives Mentoring Mentors Others

  23. Summary of Findings to Date • Implementation • Filling vacancies was feasible • Large pool of candidates needed • Meaningful contrast achieved • Intermediate impacts • Increased experience and credentials slightly • No significant impact on climate or collegiality • No change in how students assigned to teachers • TTI transfers used less & provided more mentoring • Impact on test scores and retention • Will be public in the final report (2013)

  24. Future Work • Impacts on test scores and retention • Cost-benefit • Shadow price of raising test scores using CSR • Retention adjusted impacts, extrapolate into future? • Spatial analysis of mobility decisions • Related policies

  25. Related Policies • Transfer groups of teachers (e.g. through reconstitution) • Additional screening criteria for HP teachers • Bonus conditional on performance in new school • Policy that spans district boundaries (e.g. statewide)

  26. THE END(extra slides follow)

  27. Summary of Prevalence Findings • Districts vary • Elementary and middle school differ • Overall pattern suggests: • Unequal access at middle school level • Less evidence for unequal access at elementary level

  28. Prevalence of HP Teachers: Do Low-Income Students Have Equal Access?

  29. Prevalence of Highest-PerformingMiddle School Math Teachers* Quintiles Based on Poverty * Statistically significant

  30. Prevalence of Highest-PerformingMiddle School Language Arts Teachers* Quintiles Based on Poverty * Statistically significant

  31. Prevalence of Highest-PerformingElementary Teachers Quintiles Based on Poverty

  32. Results for Individual Districts Results, Five Districts at a Time

  33. Prevalence of Highest-Performing Middle School Math Teachers (Districts A-E) Quintiles Based on Poverty

  34. Prevalence of Highest-Performing Middle School Math Teachers (Districts F-J) Quintiles Based on Poverty

  35. Overall, but Using Achievement to Divide Schools

  36. Prevalence of Highest-PerformingMiddle School Math Teachers* Quintiles Based on Achievement * Statistically significant

  37. Prevalence of Highest-PerformingMiddle School Language Arts Teachers* Quintiles Based on Achievement * Statistically significant

  38. Prevalence of Highest-PerformingElementary Teachers* Quintiles Based on Achievement * Statistically significant

  39. Components of Estimated Teacher Performance • Decompose value added estimate Total Performance Persistent Teacher Ability Returns to Specialization Noise, Luck, Measurement Error Transitory Performance

  40. Prevalence of Highest-Performing Middle School ELA Teachers (Districts A-E) Quintiles Based on Poverty

  41. Prevalence of Highest-PerformingMiddle School ELA Teachers (Districts F-J) Quintiles Based on Poverty

  42. Prevalence of Highest-Performing Elementary Teachers (Districts A-E) Quintiles Based on Poverty

  43. Prevalence of Highest-Performing Elementary Teachers (Districts F-J) Quintiles Based on Poverty

  44. Study Design, Crossover Case School pair with matching vacancies in two grades. Randomization Block School A School B

  45. Study Design, Crossover Case (cont’d.) School A School B

  46. Teacher Team Dynamics

  47. Team and Focal Teacher Analysis • Team-level • Impact estimate has intent-to-treat (ITT) interpretation Under zero resource allocation effect: • Focal teacher comparison • Impact estimate denotes the direct impact • Nonfocal teacher comparison • Impact estimate denotes the indirect impact

  48. Interpretation/Analysis Issues • Dilution of direct effect • Non-compliers (unfilled vacancies) • Block-defined subgroups • High contrast transfers • High value added transfers • Complier blocks

  49. Self-Reported Reasons For Not Applying Percentages, N = 680

  50. How Are Students Assigned to Classrooms?Principal Report (N=57 Treatment, 54 Control) None of the differences are statistically significant.

More Related