340 likes | 505 Views
Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals Disampaikan dalam Forum Seminar Nasional Teknik Kimia Palembang, 19 Juli 2006 Oleh Setiadi setiadi@che.ui.edu or hasbila@eng.ui.ac.id SMS. 08159088431
E N D
Makalah (Code KKR 09) Time on Stream Stability of H-ZSM-5 Catalyst on Acetone Conversion to Aromatic Chemicals Disampaikan dalam Forum Seminar Nasional Teknik Kimia Palembang, 19 Juli 2006 Oleh Setiadi setiadi@che.ui.eduor hasbila@eng.ui.ac.id SMS. 08159088431 Department Of Chemical Engineering Faculty Of Engineering - University Of Indonesia
Introduction Proses Katalitik Hidrokarbon C1- C10 Aseton ZSM-5 Aseton : senyawa organic polar yang dapat diproduksi dari materi hayati renewable mll. fermentasi, pirolisis , maupun new process via supercritical decomposition C1 : CH4 C2 : C2H4, C2H6 C3 : C3H6, C3H8 C4 : C4H8, C4H10 C5 : C5H10, C6 : C6H6, C6 alifatik C7 : Toulena, Alifatik, C8 : Xylena, alifatik C9 : Mesitylene (1,3,5 TMB) C10 : Durene, Naphthalene Kemampuan shape-selectivity ZSM-5 terletak pada bangunan struktur kristalnya yang diameter/bukaan pori sekitar 0,56 nm dan hampir homogen. Katalis ZSM-5 banyak digunakan untuk transformasi reaksi-reaksi hidrokarbon dibanding dgn. ZSM-5 digunakan reaksi senyawa organik polar
Non-Renewable Route Introduction Geological Time Frame Process (Millions years) Biomass derived liquid Fossil Resources – Crude Oils (C1-C40) Hydrocarbons Renewable Route (The Yellow Arrows) Transformation & Utilization Biological time frame Fuel : LPG (C3-C4 H.Cs), Gasoline(C5-C10 H.Cs), Diesel Fuel, Kerosene, Avian Jet Fuel, etc Biomass Materials Fuel Combustion Waste biological activities Fotosintesis CO2 CO2 Un-converted CO2 H2O The Concept Carbon Cycle Route for renewable biomass and non-renewable as the origins of hydrocarbons for fuels & chemicals (developed from Kojima, 1998; Metzger & Eissen, 2004 dan Padabed et al.,2002)
Resources Non-renewable Renewable Fossil Resources (Petroleum crude Oil) Biomass Materials • Fuel (Gasohol), (O.N., RVP) • Petrochemicals • Minyak Nabati • ( Sawit, Jarak, ) Refinery Process & Catalytic Cracking Unit (FCC) Scope of this Research Work C1-C10Aromatic Compounds Biomass-derived liquid from fermentation Products (sagu, singkong, tetes tebu/molasses, 80 % Yield Limbah Tandan Kosong Sawit, dll.) Target Compounds Ethanol Acetone, Butanol • Biomass-Based Technology established ??? • Catalytic Reaction Process? Catalyst ? HZSM-5 & Nat. Zeolite • Reaction condition? A Schematic Diagram of C1-C10 Hydrocarbons Route from the Origin Introduction
Fundamental Review Reaction at the internal or external surface of Zeolite Self Aldol condensation O ║ 2 [ H3C-C-CH3] 2 molecules of Acetones O ║ H3C- C-CH=C(CH3)2 Mesityl oxide (MSO) Dehydration - H2O O OH ║ │ CH3 C CH2 C (CH3)2 Diacetone alcohol (DAA) Further self Aldol condensation + (CH3)2CO - H2O Cracking inside the Pores at higher Temp > 350 oC O ║ (H3C)2C=CHCCH=C(CH3)2 phorone or diisopropylideneketone Acetic acid O C3-C4 LPG Decomposition C5-C10 H.Cs of Gasoline (Shape Selective Formation) Dimerization Condensation – Dehydrocyclization CH4 COx In progress of reaction: Continued condensation, forming higher molecular weight species which may accumulate in pore channel and shutting down the reaction Monoaromatic : Benzene Xylene Toluene EthylBenzene C9 monoaromatic C10monoaromatic • Diaromatics : • Napthalene • Monomethylnaphthalene • Dimethylnapthalene • Trimetylnaphthalene • Tetramethylnapthalen isophorone H3C CH3 C=HC O CH=C H3C ║ CH3 C=CH-C-CH=C H3C CH3 C=HC CH=C H3C CH3 1,3,5-Trimethylbenzene (Mesitylene) Reaction at the internal surface of ZSM-5 Reaction at the external surface of ZSM-5 • A reaction mechanism for the acetone conversion for C3-C4 or C5-C10 Aromatichydrocarbons formation
Fundamental Review Tracking Acuan untuk MekanismeReaksi • Chang C.D dan A.J. Silvestri, 1977, The conversion of Methanol and Other O-Compounds to hydrocarbons over Zeolite Catalysts, Journal of Catalysis, 47, 249-259 • Chang, Clarence D., W. H. Lang, and W.K. Bell, 1981, "Molecular Shape-Selective Catalysis in Zeolite," in Catalysis of Organic Reactions edited by William R. Moser, Marcel Dekker Inc., 73-94 • Xu, Teng, Eric J. Munson, and James F. Haw, 1994, "Toward a Systematic Chemistry of Organic Reactions in Zeolites: In Situ NMR Studies of Ketones," J. Am. Chem. Soc., 116, 1962-1972 • Hutchings, Graham J., Peter Johnston, Darren F. Lee, Ali Stair Warwick, Craig D. Williams and Mark Wilkinson, 1994, "The conversion of methanol and other O-compounds to hydrocarbons over zeolite β", Journal of Catalysis 147, 177-185 • Lucas, A., P. Canizares, A. Duran, A. Carrero, 1997, "Dealumination of HZSM-5 zeolites : Effect of steaming on acidity and aromatization activity," Appl. Catal. 154, 221 • Stevens, Mark G., Denise Chen and Henry C. Foley, 1999, "Oxidized Cesium/Nanoporous Carbon Materials: Solid-Base Catalysts with Highly Dispersed Active Sites," J.C.S., Chemical Commun., 275-276 • Dehertog, W.J.H., G.F. Fromen, 1999, "A catalytic route for aromatics production from LPG", Applied Catalysis A: General 189 63-75 • Zaki, M.I., M. A. Hasan, F.A. Al-Sagheer, and L. Pasupulety, 2000, "Surface Chemistry of Acetone on Metal Oxides: IR Observation of Acetone Adsorption and Consequent Surface Reactions on Silica-Alumina versus Silica and Alumina," Langmuir, 16, 430-436 • Xu, M., W. Wang and Michael Hunger; 2003, " Formation of acetone enol on acidic zeolite ZSM-5 evidenced by H/D exchange", Chem Commun, 722-723
(1,3,5 Trimetilbenzena) Fundamental Review • Shift Selectivities Due to The Temp. Changes • Contoh : • 2 (dua) Temp. 350 oC & 400 oC untuk produk • Isobutene • Aromatics • Aliphatics • COx Konversi Aseton & Sensitivitas Pergeseran Selektivitas Produk terhadap Suhu Reaksi (Sumber : Chang, Lang, & Bell, 1981, Catalysis of Organic Reactions by William R. Moser (Editor), Marcel Dekker Inc., 73-94)
Fundamental Review Basic unit building block-AlO4 or SiO4 tetrahedra structure Ten-membered oxygen ring structure Secondary building block, Chains of 5-membered oxygen rings Secondary building block, Chains of 5-membered oxygen rings Straight channel, Elliptical openings 0.51 x 0.55 nm Vertically-cross sectional view Zig-zags channel, Circular openings 0.54 x 0.56 nm The Framework of ZSM-5 structure
Fundamental Review Acidic protons migrate between the four oxygen atoms surrounding the tetrahedral aluminum center in the following fashion (Ryder, dkk., J. Phys. Chem. B 2000, 104, 6998) (Source : Sierka and Sauer, J. Phys. Chem. B 2001, 105, 1603-1613) Ilustrasi difusi molekul senyawa Hidrokarbon diseputar mulut pori zeolit
Fundamental Review Pore Dimension for some Zeolites
Objectives : • To observe the Performance of HZSM-5 on Time on stream Stability (TOS) on the Acetone Reaction to get the high as possible acetone conversion, Aromatic Yield and Product Selectivity • The influence of Si/Al ratio, Temperature during TOS Catalytic Tests
N2 Acetone fed by pump liquid drop 6 mm , i.d 19 cm Termokope1 Quartz sand Quartz Wool Unggun Katalis 16 cm Lokasi Pengukuran Suhu Unggun Katalis Quartz Wool Batangan Baja SS 316 35 cm Reaktor Pipa, 10 mm o.d., SS 316 Reaktor Pipa, 10 mm o.d., SS 316 Experimental Method Experimental Set-up for Catalytic Test Wacetone?? Flowmeter Pump Pre-heater Acetone Quartz sand Electric furnace (1000W) Mixture of ZSM-5 & quartz sand Stainless steel rod N2 gas Wprodukcair?? Gas product Wproduk gas?? Ice - water bath Skema Diagram Penyusunan Katalis dalam Reaktor Pipa
Experimental Method Experimental conditions
Experimental Method Data GC-FID ( Hewlett Packard ) for Analysis of liquid product The condition of GC-TCD for gaseous product
Experimental Method Waktu retensi hasil deteksi chromatogram GC-FID kolom kapier DB-1 Posisi keberadaan Peak dikonfirmasi dgn.GC-MS Larutan Standard murni/ campuran
Experimental Method Waktu retensi produk gas menggunakan GC-TCD
Ethanol-Absorben Un-reacted Acetone C5-C6 aliph., 6.1-9.3‘ Benzene , 7.98' Toluene , 9.87‘ Ethylbenzene, 11.85‘ m+p-Xylene , 12.1‘ O-Xylene,12.6' C10-aromatik ,16.6-17.7‘ C9-aromatik (Trimethylbenzene) , 13.8-15.6' Naphthalene, 8.5‘ Methylnaphtahlene (MMN) , 20.5-21.0' Dimethylnaphtahlene (DMN) , sekitar 22.3' Trimethylnaphtahlene (TMN), 23.3-24 Experimental Method Note Kandungan Hidro-karbon dalam sampel produk cair juga telah dikonfir-masi dengan GC-Mass Spectrosmeter Tipikal GC-FID Chromatogram sampel produk cair
Experimental Method Tipikal Chromatogram GC-TCD sampel produk gas H2 C2H4 N2 –Carrier gas C2H6 CH4 C3H6 CO C3H8 C4 Chromatogram resulted from GC using Poropak Q Column Chromatogram resulted from GC using Molecular Sieve Column
Perhitungan konv.aseton, Fraksi Liquid, Fraksi Gas Metode Penelitian % Carbon ? % Carbon ? % C ?
Selectivities &Yield Experimental Method Selectivities by %C
Results & Discussions Si/Al=25, TOS =17 h stable at ca.100% Conv. Si/Al=25 Si/Al=100 Si/Al=75 Acetone conversion over HZSM-5 by various Si/Al mol ratio. WHSV = 4 h-1, N2 carrier = 30 ml/min.
Results & Discussions TOS <= 17 h stable at ca.100% Conv. T=673 K T=723 K T=573 K T=623 K The stability of H-ZSM-5 Si/Al =25 on various reaction temperature
Results & Discussions TOS < 13 h, Yield > 60% T=673 K T=723 K T=573 K T=623 K Yield of monoaromatic duing time on stream on various temperature
Results & Discussions Diaromatik H-ZSM-5 → High Shape Selective for Aromatic Formations, Total Select. > 60 % Monoiaromatik Alifatik Product Selectivity within 100 min with H-ZSM-5 Si/Al=25 COx
Results & Discussions Monoiaromatik Monoiaromatik Monoiaromatik C4 Aliphatics C4 Aliphatics C4 Aliphatics Fig. 6 The change of monoaromatic and C4 aliphatics selectivity during the progressing of time on stream reaction • Note • The relative symmetry in the opposite direction between the increasing of C4 aliphatics and the decreasing of monoaromatic selectivity • The shift selectivity between the change of monoaromatic and C4 aliphatics selectivity during TOS
Conclusions • ZSM-5 with Si/Al = 25 is the high active and stable than the Si/Al ratio, it indicates that the reaction of acetone reaction required a high acid density on the surface of catalyst. • The reaction on 673 K is a favorable temperature for acetone conversion toward aromatic products. The lower temperatures of reaction lead to rapid deactivation, and the higher temperatures tend to decline the yield/selectivity of aromatics products • The formation of aromatic compounds come from the C4 aliphatics and big possibilities that the loss of activity of catalyst and shift selectivity are caused by coking which covers the surface acid sites of ZSM-5
Terima kasih kpd.Prof. T. Kojima, Staffs & the Excellent Students, Faculty Engineering, Seikei University, Tokyo-JapanProf. T. Tsutsui Applied Chemistry & Chem. Engineering, Kagoshima University, Kyushu-JapanProf. Takao Masuda, Div. of Material Science and Eng., Graduate School of Eng., Hokkaido University, Sapporo, Japan
The powder of Fresh Catalyst, the white color • The change of color for the powder of used Catalyst to be black or dark brown
Effect of Boron oxide loading into HNZ catalyst on Product Reaction
The comparation of the results due to the water addition into acetone feed
The change of acetone conversion along with Paraffin/olefin ratio during reaction over ZSM-5 (Si/Al=25) Reaction condition : Temperature = 673 K, P=0.13 MPa, WHSV= 4 g/g.h, N2 carrier = 30 ml/min