1 / 19

154 lb Leg tumor

154 lb Leg tumor. Regulation of Cell Division Target: I can describe what happens when uncontrolled cell growth occurs. Coordination of cell division. A multicellular organism needs to coordinate cell division across different tissues & organs

nenet
Download Presentation

154 lb Leg tumor

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 154 lb Leg tumor Regulation of Cell DivisionTarget: I can describe what happens when uncontrolled cell growth occurs.

  2. Coordination of cell division • A multicellular organism needs to coordinate cell division across different tissues & organs • critical for normal growth, development & maintenance • coordinate timing of cell division • coordinate rates of cell division • not all cells can have the same cell cycle

  3. M anaphase metaphase telophase prophase C G2 interphase (G1, S, G2 phases) mitosis (M) cytokinesis (C) G1 S Frequency of cell division • Frequency of cell division varies by cell type • embryo • cell cycle < 20 minute • skin cells • divide frequently throughout life • 12-24 hours cycle • liver cells • retain ability to divide, but keep it in reserve • divide once every year or two • mature nerve cells & muscle cells • do not divide at all after maturity • permanently in G0

  4. Checkpoint control system • Checkpoints • cell cycle controlled by STOP & GO chemical signals at critical points • signals indicate if key cellular processes have been completed correctly

  5. Checkpoint control system • 3 major checkpoints: • G1/S • can DNA synthesis begin? • G2/M • has DNA synthesis been completed correctly? • commitment to mitosis • spindle checkpoint • are all chromosomes attached to spindle? • can sister chromatids separate correctly?

  6. Activation of cell division • How do cells know when to divide? • cell communication signals • chemical signals in cytoplasm give cue • signals usually mean proteins • activators • inhibitors experimental evidence: Can you explain this?

  7. “Go-ahead” signals • Protein signals that promote cell growth & division • internal signals • “promoting factors” • external signals • “growth factors” • Primary mechanism of control • phosphorylation • kinase enzymes • either activates or inactivates cell signals

  8. inactivated Cdk Cell cycle signals • Cell cycle controls • cyclins • regulatory proteins • levels cycle in the cell • Cdks • cyclin-dependent kinases • phosphorylates cellular proteins • activates or inactivates proteins • Cdk-cyclin complex • triggers passage through different stages of cell cycle activated Cdk

  9. Leland H. Hartwell checkpoints Tim Hunt Cdks Sir Paul Nurse cyclins 1970s-80s | 2001 Cyclins & Cdks • Interaction of Cdk’s & different cyclins triggers the stages of the cell cycle

  10. Growth factor signals growth factor nuclear pore nuclear membrane P P cell division cell surface receptor Cdk E2F protein kinase cascade P chromosome P Rb P E2F Rb nucleus cytoplasm

  11. Example of a Growth Factor • Platelet Derived Growth Factor (PDGF) • made by platelets in blood clots • binding of PDGF to cell receptors stimulates cell division in connective tissue • heal wounds Don’t forget to mentionerythropoietin!(EPO)

  12. Growth Factors and Cancer • Growth factors can create cancers • proto-oncogenes • normally activates cell division • growth factor genes • become oncogenes (cancer-causing) when mutated • if switched “ON” can cause cancer • example: RAS (activates cyclins) • tumor-suppressor genes • normally inhibits cell division • if switched “OFF” can cause cancer • example: p53

  13. Cancer & Cell Growth • Cancer is essentially a failure of cell division control • unrestrained, uncontrolled cell growth • What control is lost? • lose checkpoint stops • gene p53 plays a key role in G1/S restriction point • p53 protein halts cell division if it detects damaged DNA • options: • stimulates repair enzymes to fix DNA • forces cell into G0 resting stage • keeps cell in G1 arrest • causes apoptosis of damaged cell p53 is theCell CycleEnforcer p53 discovered at Stony Brook by Dr. Arnold Levine

  14. Development of Cancer • Cancer develops only after a cell experiences ~6 key mutations (“hits”) • unlimited growth • turn on growth promoter genes • ignore checkpoints • turn off tumor suppressor genes (p53) • escape apoptosis • turn off suicide genes • immortality = unlimited divisions • turn on chromosome maintenance genes • promotes blood vessel growth • turn on blood vessel growth genes • overcome anchor & density dependence • turn off touch-sensor gene It’s like anout-of-controlcar with manysystems failing!

  15. What causes these “hits”? • Mutations in cells can be triggered by • UV radiation • chemical exposure • radiation exposure • heat • cigarette smoke • pollution • age • genetics

  16. Tumors • Mass of abnormal cells • Benign tumor • abnormal cells remain at original site as a lump • p53 has halted cell divisions • most do not cause serious problems &can be removed by surgery • Malignant tumor • cells leave original site • lose attachment to nearby cells • carried by blood & lymph system to other tissues • start more tumors =metastasis • impair functions of organs throughout body

  17. Traditional treatments for cancers • Treatments target rapidly dividing cells • high-energy radiation • kills rapidly dividing cells • chemotherapy • stop DNA replication • stop mitosis & cytokinesis • stop blood vessel growth

  18. New “miracle drugs” • Drugs targeting proteins (enzymes) found only in cancer cells • Gleevec • treatment for adult leukemia (CML)& stomach cancer (GIST) • 1st successful drug targeting only cancer cells withoutGleevec withGleevec Novartes

  19. Any Questions??

More Related