510 likes | 729 Views
Panoramica INRIM. Rivelare i fotoni e la loro statistica con i Transition-Edge Sensors (TESs). Mauro Rajteri Divisione OTTICA. Mauro Rajteri, 12/06/2013 Panoramica INRIM. Introduction.
E N D
Panoramica INRIM Rivelare i fotoni e la loro statistica con i Transition-Edge Sensors (TESs) Mauro Rajteri Divisione OTTICA Mauro Rajteri, 12/06/2013 Panoramica INRIM
Introduction Photon: also called Light Quantum, minute energy packet of electromagnetic radiation. The concept originated (1905) in Einstein’s explanation of the photoelectric effect (enc. Brittanica) Photon counting: average count rate intensity of the light beam but actual count rate fluctuates from measurement to measurement.
Photon statistics Coherent light & constant intensity: 3.1
Single Photon detectors "Classical" Single photon detector Photon source Photon number resolving (PNR) detector
Ibias Transition-Edge Sensors (TESs) TES:a superconducting film operated in the temperature region between the normal and the superconducting state DTc~ 1 mKhigh sensitivethermometer t (s) R Ites WorkigPoint I T Tc ~ 100 mK Rbias<< Rtes DT DR @ Voltage bias DI
Ibias Transition-Edge Sensors (TESs) TES:a superconducting film operated in the temperature region between the normal and the superconducting state DTc~ 1 mKhigh sensitivethermometer t (s) R 1ph Ites WorkigPoint I T Tc ~ 100 mK Rbias<< Rtes DT DR @ Voltage bias DI
Ibias t (s) I Transition-Edge Sensors (TESs) TES:a superconducting film operated in the temperature region between the normal and the superconducting state DTc~ 1 mKhigh sensitivethermometer 2 phs Ites Working Point T Rbias<< Rtes DT DR @ Voltage bias DI R Tc ~ 100 mK
10 µm X10 µm 20 µm X 20 µm Transition-Edge Sensors (TESs) Bilayer – proximity effect Ti=24 nm, Au=54 nm Tc =121 mK ∆Tc = 2 mK Rn = 0.220 Ω
Superconductor - e Superconductor - ph Pinc Pe Substrate Te ge-ph Ps Thermal bath Tph gph-sub Tsub gsub-b Tb TES: thermal model g= thermal conductance K = constant: material and geometry dependent n = constant: depends on the dominant thermal coupling mechanism For T < 1K electron-phonon decoupling n 5
Effective TES response time TES: theory Intrinsic Energy Resolution ∆EFWHMis proportional to the operating temperature Tc etfis lower than th if /n >1
TES: optical alignment 2w 2w0 Gaussianbeam: w0=4.7/5.6mm@l=1.3/1.55mm 2w~19÷ 25 mm z~ 125 m acc~ 58% @1.55mm÷ 80% @1.3mm 0,5 mm (TES 20 x 20 mm) Silicon V-groove with fiber array 5 mm 1,5 mm 1,5 mm 0,5 mm 0.8 mm 0,5 mm back off Cu bracket 0,25 0,25 3 mm Silicon 1mm
2 layers 2 layers R(1550)=0.018% Substrate Substrate Substrate Substrate TES: optical losses • Optical coupling fiber-TES • Reflection and transmission of superconducting film Antireflection coating or optical cavity a-Si3N4:Hy (low reflection index) a-SiH (high reflection index)
TES: photon counting Laser Electronics & data aquisition DITES Optical fiber Attenuator INRIM: TES module SQUID current sensors (PTB)
TES: pulse analysis Noisy: ΔE = 0.46 eV Wiener filter: 2x improvement on E 1 (a) 2 3 4 5 Wiener: ΔE = 0.22 eV (b) D. Alberto, et al, Optical Transition-Edge Sensors Single Photon Pulse Analysis, IEEE Trans. Appl. Supercond., 21 , 285 – 288 (2011)
TES: photon counting phs 20X20 μm2 =1570 nm L. Lolli, et al. J. Low Temp. Phys., vol. 167, pp. 803-808, 2012.
Absolute C O U N T E R Q u a n t u m E f f i c i e n c y C O U N T E R TES: QE absolute calibration Klyshko Detector to be Calibrated w s N1 NC C O I N C N C O U N T E R w p N2 P A R A M E T R I C w C R Y S T A L i Drawback: Klyshko's technique is not able to exploit the PNR ability of the detector Proposal and demonstration of an absolute technique for measuring quantum efficiency, based on an heralded single photon source, but exploiting the PNR ability of the detector “Herald” Detector A. Avella et al OPTICS EXPRESS 2011 19 p. 23249-23257
TES: QE absolute calibration Probability of observing i photons per heralding count in the presence of the heralded photon Probability of observing i photons per heralding count in the absence of the heralded photon (i.e. of observing i “accidental” counts) The probability of observing 0 photons per heralding count : False her.& No accidental Non detection & No accidental “Total” Quantum Efficiency of the PNR detector optical and coupling losses detector proper Quantum Efficiency Probability of having a True Heralding Count (not due to stray-light or dark counts)
TES: QE absolute calibration The probability of observing i photons per heralding count From each a value of “Total” Quantum Efficiency can be estimated Consistency Test From the probability of 0 From the probability of i Hpof the Klyshko’s Technique: multiphoton PDC events negligible
TES: QE absolute calibration IF1 DET1 NLC HWP PDC single photon source Pump source TES detection system IF2 b a
TES: QE absolute calibration PUMP total quantum efficiency DET1 6 Repeated measurements each 5 hr. long >5 106counts Heralded Accidental @ 807 nm prob. of true heralding counts
TES: POVM tomography POVM provides the description of the measurement process “n” Prob. of output “n”
TES: POVM tomography POVM provides the description of the measurement process “n” Prob. of output “n”
TES: POVM tomography POVM provides the description of the measurement process “n” Prob. of output “n” : Prob. of having output “n” with m photons as input
TES: POVM tomography Simplest Solution: Fock state source
TES: POVM tomography Simplest Solution: Fock state source
TES: POVM tomography Simplest Solution: Fock state source Affordable Solution: Coherent source [Lundeen et al., Nat. Phys 5, 27 (2009)]
TES: POVM tomography Coherent source Pulsed laser source Experiment with a TES 1570 nm
TES: POVM tomography Coherent source Pulsed laser source Experiment with a TES
TES: POVM tomography Coherent source Pulsed laser source Experiment with a TES
TES: POVM tomography Coherent source Linear detection model =5.1% G. Brida et al New Journal of Physics 14 (2012) 085001
Fast TES Joint Projects for the exchange of researchers within the Executive Programme Italy-Japan 2010-2012 Alignment: ADR cold finger
Fast TES TiAu TES Tc=301 mK 73 phs =1535 nm @ 500 kHz means 3.65x106 photons/s (473 fW) QE 50 %
TES: High energy resolution Rn=0.45 45nm Au+45nm Ti 10 mm x 10 mm Tc=106 mK Ce=0.35fJ/K
TES: High energy resolution teff = 3.8 ms DE= (0.113 ± 0.001) eV (Submitted to APL)
Conclusions TES Photon number resolving detectors Wavelength range: UV-IR Quantum efficiency:50%90% Dark counts: background limited Count rate: 1 MHz Working temperature: < 1K
Chi fa cosa Fabbricazione: C. Portesi, E. Monticone Caratterizzazione : E. Taralli, L.Lolli , E. Monticone, M. Rajteri (criogenica, elettrica e ottica) E. Taralli, L. Callegaro (impedenza) Sviluppo Taratura Applicazioni Ottica quantistica: A. Avella,G. Brida, L. Ciavarella, I. Degiovanni, M. Genovese, M. Gramegna, M.G. Mingolla,F. Piacentini, M.L. Rastello, P. Traina Collaborazioni J. Beyer, D. Fukuda, T. Numata, M.G.A. Paris, M. White, G. Cantatore, G. Ventura
Finanziamenti 2001-2004 -Fotorivelatori superconduttivi ad elettroni caldi per il VIS-IR -Realizzazione di STJ come rivelatori in regime di conteggio di fotoni per applicazioni astrofisiche E45 (2006-2010) Rivelatori superconduttivi a transizione di fase per conteggio di singoli fotoni Quantum Candela (2008-2011) Progettopremiale P5 (2012-2013) Oltre I limiticlassicidellamisura NEW08 MetNEMS (2012-2015) Metrologywith/for NEMS