1 / 27

Current Version; CCM E39/C Future: ECHAM5/MECCA

NO x Emissions [Tg N/a]. Surface, aircraft, lightning. Photolysis. Dynamics (ECHAM). T30, 39 layers, top layer centred at 10 hPa. Chemistry (CHEM). Prognostic variables (vorticity, divergence, temperature, specific humidity, log-surface pressure, cloud water),

neo
Download Presentation

Current Version; CCM E39/C Future: ECHAM5/MECCA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NOx Emissions [Tg N/a] Surface, aircraft, lightning Photolysis Dynamics (ECHAM) T30, 39 layers, top layer centred at 10 hPa Chemistry (CHEM) Prognostic variables (vorticity, divergence, temperature, specific humidity, log-surface pressure, cloud water), hydrological cycle, diffusion, gravity wave drag, transport of tracers, soil model, boundary layer; sea surface temperatures. Methane oxidation Heterogeneous Cl reactions PSC I, II, aerosols Dry/wet deposition Feedback O3, H2O, CH4, N2O, CFCs Chemical Boundary Conditions Radiation Atmosphere: CFCs, at 10 hPa: ClX, NOy, Surface: CH4, CO Long-wave Short-wave Current Version; CCM E39/C Future: ECHAM5/MECCA Lagrangian Transport ATTILA Stenke&Grewe 2005 Hein et al., 2001

  2. High variability Ozone hole Evolution of ozone column [DU]: 1960 - 2000 1960 1980 2000 1980

  3. Grewe, 2004

  4. Ozone influx: ozone origin Northern Hemisphere: Ozone mainly produced in NHMSTRMSTRTS NHMS: high inter-annual variability Southern Hemisphere: Ozone mainly produced in TRTSSHMSTRLS SHMS lowinter-annual variability  solar cycle visible Grewe, 2005

  5. The lightning NOx source Kurz and Grewe, 2002

  6. Variability and trends in the tropical UT: ENSO MLS H2O, UT, Tropics E39/C H2O, 200 hPa,Tropics 150E 90W (ppmv) Longitude • Model reproduces individual strong events almost identical, e.g. 1995/96, 1997/98

  7. Marked ozone tracers in a NMHC-model: MOZART-2 1890 1990 anthropogenic natural stratosphere Lamarque et al., 2005

  8. Ozone changes in the tropical upper troposphere (30S-30N; 500-200 hPa) • Lightning: • most important source for ozone • Large contrib. to variability Stratospheric ozone second most important source From 1990 Industry and surface transportation

  9. Stratospheric ozone follows influx from stratosphere, producing ±2% variability out of a totale interannual var. of ±4% Lightning ozone correlated with Nino Index variability: ±1-2% De-seasonalized ozone changes in the tropical UT

  10. Evolution of ozone in NH lower troposphere (30N-90N; 500-1000 hPa) Most important sources: Industry, surface transportation, lightning, stratosphere

  11. Evolution of de-seasonalized ozone in NH lower troposphere (30N-90N; 500-1000 hPa) ~25% ~30% -5% • Year-to-year variability strongly dominated by stratosphere (±5%) • Trend in ozone (25% increase): • - results from increase in NOx emissions (Industry and traffic) • Trend reduction in 80s caused by lower emissions and • lower stratospheric contribution.

  12. Conclusion (1) • Stratosphere • realistical variability of dynamics • realistical ozone trend (10% by H2O trend Stenke&Grewe, 2005) • Interannual ozone-variability well reproduced (DWD-Ozonbulletin) • Validation mainly based on direct comparison with observation (TOMS, ...) • Stratosphere-Troposphere Exchange • ozone influx diagnosed, solar cycle influences variability • different ozone origins for STE on NH and SH results in different variability • Findings based on special diagnostics: ozone origin • Troposphere • inter-annual variability in ozone attributed to sources • NH ozone trend: Industry+Traffic (+30%), slower in 80s Reduction in 80s, caused by Strat-O3 • Findings based on special diagnostics: ozone emission relation (tagged tracers)

  13. Conclusion (2) • The identification of climate-chemistry interactions, • e.g. 'How does climate change chemistry?' • largely depends on additional diagnostics. • 2 Diagnostics presented • a) Ozone origin diagnostic • b) Ozone - emissions source relation • How well do we understand these processes: • a) How much of the ozone in the troposphere is originally produced • e.g. in the tropics 30 km? • b) How much ozone is produced e.g. by lightning? • Model intercomparison would help to understand these processes. • Observational data maybe partly available.

  14. Institut für Physik der Atmosphäre

  15. Overview • Motivation • Modell / Experiment • Stratosphere: • Circulation: Validation • Chemistry: Ozone: What determines its variability • Impact on the troposphere • Troposphere • NOx and Lightning • Ozone Trends • Summary

  16. Änderungen des Tropopausendrucks

  17. 40°N 40°N Änderungen des Wasserdampf-Mischungsverhältnis an der thermischen Tropopause

  18. Randel et al., 2004 E39/C: Wasserdampftrend in 80 hPa, 40°N und 40°S

  19. Boulder 40°N E39/C: Wasserdampftrend an der thermischen Tropopause1980-2000 (!)

  20. Variabilität durch vorgeschriebene Antriebe • Einfluss von Vulkanen

  21. Variabilität durch vorgeschriebene Antriebe • Einfluss der quasi-zweijährigen Oszillation (QBO)

  22. Anomalien der Ozongesamtsäule, bezogen auf 1964 bis 1980

  23. Ozonbulletin des DWD, November 2004

  24. Variabilität der Ozongesamtsäule in 30° - 60°N, JFM 12 DU ± 4 DU

  25. Variabilität durch vorgeschriebene Antriebe • Einfluss der solaren Aktivität • (11-Jahres Zyklus)

  26. Ozonproduktionsrate und -photolyserate in 10, 30 und 50 hPa

  27. Zusammenfassung • Ergebnisse der früheren Zeitscheibenexperimente (1960, 1980, 1990) und die daraus abgeleiteten Schlüsse (z.B. Hein et al., 2001; Grewe et al., 2001; Schnadt et al., 2002) werden bestätigt. Berechnete klimatologische Mittel dynamischer und chemischer Größen sowie saisonale und interannuale Variationen stimmen mit Beobachtungen weitestgehend überein. • Langzeitliche Veränderungen (Trends) werden in der transienten Simulation zufriedenstellend reproduziert. • Das Modell zeigt überraschenderweise Ähnlichkeiten mit beobachteten, singulären Ereignissen, besonders in der Südhemisphäre. • Vorgeschriebene Meeresoberflächentemperaturen, die Berücksichtigung der solaren Variabilität und der QBO spielen für die Variabilität der (Modell-)Atmosphäre eine wichtige Rolle, große Vulkanausbrüche beeinflussen die Atmosphäre nur für wenige Jahre.

More Related