1 / 21

Search Pipelines for Binary Inspiral

Duncan Brown Inspiral Working Group University of Wisconsin-Milwaukee LIGO-G040107-00-Z. Search Pipelines for Binary Inspiral. S2 Inspiral Pipeline. lalapps_tmpltbank. S2 Inspiral Pipeline. lalapps_inspiral. S2 Inspiral Pipeline. lalapps_inca. S2 Inspiral Pipeline. lalapps_inca.

Download Presentation

Search Pipelines for Binary Inspiral

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Duncan Brown Inspiral Working Group University of Wisconsin-Milwaukee LIGO-G040107-00-Z Search Pipelines for Binary Inspiral

  2. S2 Inspiral Pipeline lalapps_tmpltbank

  3. S2 Inspiral Pipeline lalapps_inspiral

  4. S2 Inspiral Pipeline lalapps_inca

  5. S2 Inspiral Pipeline lalapps_inca

  6. S2 Inspiral Pipeline lalapps_inspiral

  7. S2 Inspiral Pipeline lalapps_inca

  8. S2 Inspiral Pipeline lalapps_inca

  9. S2 Inspiral Pipeline LIGO_LW XML file

  10. Pipeline Infrastructure Requirements • Ensure that all data is analyzed • Automate pipeline as much as possible • Provide flexible pipeline for testing and tuning • Allow easy construction of complex workflows • Simple reusable infrastructure • Easy to debug

  11. Pipeline Implementation • Condor to manage job submission to cluster • lalapps code to execute components of pipeline • Use LAL functions for GW analysis • Condor DAGman to manage execution of pipeline • Standard file types for I/O • Read AS_Q and calibration from frame data • Writes triggers as LIGO_LW XML • Can write r(t), x2(t), PSD, filter data as frames

  12. Creation of the DAG • Simple Python modules in lalapps to build scripts that write pipeline • lalapps/src/lalapps/pipeline.py • Read segwizard files • Manipulate science segments (union, intersection, inverse) • Create Condor Jobs and DAGs • lalapps/src/inspiral/inspiral.py • Construction of DAG nodes specific to inspiral • lalapps/src/inspiral/inspiral_pipe.in • Use building blocks to construct pipeline

  13. Putting It All Together data = pipeline.ScienceData() data.read(‘segwizard.txt’,2048) data.make_chunks(length,overlap,isplay) dag = pipeline.CondorDAG(‘mydag.dag’) datafind_job = pipeline.LSCDataFindJob() inspiral_job = inspiral.InspiralJob() for seg in data: df = pipeline.LSCDataFindNode() df.set_start(seg.start()) df.set_end(seg.end()) for chunk in seg: insp = inspiral.InspiralNode() insp.set_start(chunk.start()) insp.set_end(chunk.end()) insp.add_parent(df) dag.write()

  14. Putting It All Together data = pipeline.ScienceData() data.read(‘segwizard.txt’,2048) data.make_chunks(length,overlap,isplay) dag = pipeline.CondorDAG(‘mydag.dag’) datafind_job = pipeline.LSCDataFindJob() inspiral_job = inspiral.InspiralJob() for seg in data: df = pipeline.LSCDataFindNode() df.set_start(seg.start()) df.set_end(seg.end()) for chunk in seg: insp = inspiral.InspiralNode() insp.set_start(chunk.start()) insp.set_end(chunk.end()) insp.add_parent(df) dag.write()

  15. Putting It All Together data = pipeline.ScienceData() data.read(‘segwizard.txt’,2048) data.make_chunks(length,overlap,isplay) dag = pipeline.CondorDAG(‘mydag.dag’) datafind_job = pipeline.LSCDataFindJob() inspiral_job = inspiral.InspiralJob() for seg in data: df = pipeline.LSCDataFindNode() df.set_start(seg.start()) df.set_end(seg.end()) for chunk in seg: insp = inspiral.InspiralNode() insp.set_start(chunk.start()) insp.set_end(chunk.end()) insp.add_parent(df) dag.write()

  16. Putting It All Together data = pipeline.ScienceData() data.read(‘segwizard.txt’,2048) data.make_chunks(length,overlap,isplay) dag = pipeline.CondorDAG(‘mydag.dag’) datafind_job = pipeline.LSCDataFindJob() inspiral_job = inspiral.InspiralJob() for seg in data: df = pipeline.LSCDataFindNode() df.set_start(seg.start()) df.set_end(seg.end()) for chunk in seg: insp = inspiral.InspiralNode() insp.set_start(chunk.start()) insp.set_end(chunk.end()) insp.add_parent(df) dag.write()

  17. Putting It All Together data = pipeline.ScienceData() data.read(‘segwizard.txt’,2048) data.make_chunks(length,overlap,isplay) dag = pipeline.CondorDAG(‘mydag.dag’) datafind_job = pipeline.LSCDataFindJob() inspiral_job = inspiral.InspiralJob() for seg in data: df = pipeline.LSCDataFindNode() df.set_start(seg.start()) df.set_end(seg.end()) for chunk in seg: insp = inspiral.InspiralNode() insp.set_start(chunk.start()) insp.set_end(chunk.end()) insp.add_parent(df) dag.write()

  18. Putting It All Together data = pipeline.ScienceData() data.read(‘segwizard.txt’,2048) data.make_chunks(length,overlap,isplay) dag = pipeline.CondorDAG(‘mydag.dag’) datafind_job = pipeline.LSCDataFindJob() inspiral_job = inspiral.InspiralJob() for seg in data: df = pipeline.LSCDataFindNode() df.set_start(seg.start()) df.set_end(seg.end()) for chunk in seg: insp = inspiral.InspiralNode() insp.set_start(chunk.start()) insp.set_end(chunk.end()) insp.add_parent(df) dag.write()

  19. Putting It All Together data = pipeline.ScienceData() data.read(‘segwizard.txt’,2048) data.make_chunks(length,overlap,isplay) dag = pipeline.CondorDAG(‘mydag.dag’) datafind_job = pipeline.LSCDataFindJob() inspiral_job = inspiral.InspiralJob() for seg in data: df = pipeline.LSCDataFindNode() df.set_start(seg.start()) df.set_end(seg.end()) for chunk in seg: insp = inspiral.InspiralNode() insp.set_start(chunk.start()) insp.set_end(chunk.end()) insp.add_parent(df) dag.write()

  20. S2 Inspiral DAG

  21. Conclusions • Use of Condor DAGman has been very successful • Simplifies management of analysis workflow • More time to concentrate on scientific questions • Infrastructure written in lalapps is simple to use • Python modules are documented in lalapps documentation • Reusable code • LIGO/TAMA inspiral analysis (Steve Fairhurst) • Stochastic lalapps pipeline (Adam Mercer) • Fast, simple, efficient!

More Related