430 likes | 460 Views
Explore the significance of antioxidants in promoting health and beauty, combatting oxidative stress, and minimizing damaging effects in the body and cosmetics industry. Discover various types of antioxidants like Vitamin E, Vitamin C, b-Carotene, Ubiquinone, and Flavonoids. Learn about their role in scavenging free radicals caused by factors such as radiation, UV radiation, detergents, smoking, additives, agricultural chemicals, and air pollutants. Get insights from research studies on the benefits of antioxidants for different disorders and aging processes.
E N D
Antioxidants in Health & Cosmetics
Eye Brain Face Air tube Chest Illness suggested to be associated with oxidative stress Abdomen Lower abdomen Body
Antioxidants Damaging Effects Scavenging Vitamin E Vitamin C b-Carotene Ubiquinone Flavonoids Activated oxygen Free radicals Radiation UV radiation Detergents Smoking Additives Agricultural chemicals Air pollutants
Raspberry Strawberry Blackcurrant ORAC=Oxygen Radical Absorbance Capacity http://www.hsrmagazine.com/articles/2c1specialty2.html
“Antioxidants! Antioxidants!….”
50 40 30 20 10 0 45.62 42.18 41.16 Women Men 26.77 27.97 20.08 20.09 20.9 14.42 18.71 16.06 11.72 1994 1995 1996 1997 1998 1999 (ปี ค.ศ.) ร้อยละของการเกิดผลเสีย จากการใช้ผลิตภัณฑ์ฯ Year 1994 1995 1996 1997 1998 1999 % 11.9 19.7 13.2 24.1 29.3 30.6 การใช้ผลิตภัณฑ์เสริมอาหารของผู้สูงอายุที่ร่วมในกลุ่ม the New Mexico Aging Process Study Wold et al., J Am Diet Assoc, 2005;105:54-63.
2.Antioxidants in metabolic disorders: รศ.ดร.วีรพล คู่คงวิริยพันธ์ 3.Antioxidants in neurodegenerative disorders: รศ.ดร.จินตนา สัตยาศัย 4.Antioxidants in cosmetics: รศ.ดร.พรรณวิภา กฤษฏาพงศ์ Discussion Topics 1.Generation of free radicals, oxidative stress & their’s damaging effects: ศ.ดร.ไมตรี สุทธจิตต์
Antioxidants in neurodegenerative disorders รศ.ดร. จินตนา สัตยาศัย ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์มหาวิทยาลัยขอนแก่น
CNS และOxidative stress • สมองมีปริมาณไขมันไม่อิ่มตัว (PUFAs) เป็นจำนวนมากทำให้ไว • ต่อภาวะเครียดทางออกซิเดชัน • สมองใช้ออกซิเจนในอัตราที่สูงมาก จึงมีการปล่อย oxidants • ออกจาก neural mitochondrial และสร้าง superoxide anionได้มาก • ปริมาณของ Antioxidant enzymes ใน extracellular space มีน้อย: -SOD ใน neurons -GSH และ GPX (peroxidases) ใน astrocytes -activity ของ Catalase และ GSH-Px มีต่ำ • Oxidative stress เกิดขึ้นได้โดยหลายกลไก เช่น -การเพิ่ม intracellular free Ca2+ -การหลั่ง excitatory amino acids (Glutamate)*** (GSH=glutathione;GSH-Px=glutathione peroxidase)
GSSG GSH-Px GSH-Red GSH Reactions important in the production and defense from reactive species in neurons H2O + O2 H2O + O2 Fe2+ + O2 Catalase Fe3+ SOD O2 + e- O2-. H2O2 + O2 2H+ H2O2 Fe2+/Cu+ O2 + OH- + OH. (Haber-Weiss reaction) NO. OH. + OH- + Fe3+ (Fenton Reaction) .NO2 + OH. ONOO- RH (organic compound) SOD R.(organic radical) Nitration of residue tyrosine O2 NO2+ RO2(peroxy radical) GSH-Px = glutathione peroxidase; SOD=super oxide dismutase; GSSH = glutathione disulfide; ONOO-=peroxynitrite; GSH = glutathione; O2-.=superoxide species; GSH-red = glutathione reductase; OH.=hydroxyl species
ลูกจ๋า มากิน antioxidants เพื่อ จะได้ลดการทำลายเซลล์สมอง ที่เกิดจาก oxidants ใน junk food X Junk Food Anti- oxidant menu
mGluR-II,III (basal negative feedback) mGluR-I NMDA NMDAR1/NMDAR2A high Mg2+ sensitivity + + - Glu mGluR-I Ca2+ NO PAF-R High Ca2+ PAF As neurotoxin Ca2+ mediated signals Long term potentiation (LTP) -การเรียนรู้ และความจำ -neuroplasticity, etc. Nitric oxide (NO) as -an intercellular messenger -an atypical neurotransmitter In neurotransmitter release AMPA
Hydrogen peroxide (H2O2) H2O2, a membrane-permeable form of ROS, normally produced in living cells and synapses. Synaptic plasticity H2O2 enhanced NMDA-dependent LTP in hippocampus Functions of brain plasticity -Brain development -Learning & memory -Psychiatric disorders -Neurological disorders (Kamsler & Segal, 2003)
Oxidative Stress & Neurodegenerative disorders
Renal graft Glomerulonephritis Degenerative retinal damage Cataractogenesis Burn Dermatitis Psoriasis Eye Kidney Skin Ischemic bowel Liver injury Infarction GI Heart OXIDATIVE STRESS Rheumatoid arthritis Vessels Vasospasm Atherosclerosis Joints Asthma Hyperoxia Multi-organ Lung Aging Cancer DM Brain Aging Trauma Stroke Parkinson’s disease (PD) Huntington’s disease (HD) Alzheimer’s disease (AD) Amyotrophic lateral sclerosis (ALS) Multiple sclerosis (MS)
Stroke Aging Other factors Reduction of blood flow (ischemia/hypoxia) Depletion of energy stores Na+-K+-pump failure Acidosis Failure of Ca2+ buffering sys- tems and pumps Membrane depolarization Glutamate release Opening of voltage- sensitive Ca2+ channels Activation of NMDA,AMPA & metabotropic receptors Reperfusion Elevation of intracellular Ca2+ levels NO production Activation of NO synthase,lipases, proteases and endonuclease Free-radical formation Inflammation Lipid peroxidation Release of cytokines Apoptosis Irreversible cell damage CELL DEATH Aging, Trauma & Stroke (From Calabresi et al.,2003)
Biochemical events associated with neurodegeneration of DAneurons in PD Glutamate excitotoxicity Nitric oxide Release of ferritin iron neurotoxins Iron accumulation, oxidative stress & inflammation Impaired cellular respiration Neuronal death Protein aggregation Reduction in ubiquitin- proteosome system Parkinson’s Disease (Mandel et al., 2003)
Alzheimer’s Disease Amyloidogenic pathway Non amyloidogenic pathway g secretase g secretase Ab a secretase b secretase Ab generation Excito- toxicity Inflam- mation Ab aggre- gation Tau hyper- phosphorylation Oxidation Reactive Oxygen Species Amyloid Cascade Senile plaque with microglial activation Neurofibrillary tangles Cell death Cognitive & behavioral abnormalities -Neurotransmitter deficit, -Loss of neuroplasticity (Gamblin et al., 2000)
Oxygen radical Hydrogen peroxide Amyotrophic Lateral Sclerosis Free Radical Damage to Motor Neurons (Eisen, 2000)
Multiple Sclerosis Environmental factors Genetic factors ROS production Macrophage Glutamate Excitotoxicity Transcription factors Demyelination Gene upregulation (I.e., TNF-a) Axonal damage Oligodendrocyte and neuronal loss Sources of ROS & cellular events in MS (Gilgun-Sherki et al., 2004)
Antioxidants & Neurodegenerative disorders • Antioxidant vitamins • Plant polyphenols • Human endogenous ligands • Female sex hormone: Estrogen • & Phytoestrogens
Neuroprotectants • Potentiate extrapyramidal effects of haloperidol & NOS inhibitors (Lazzarini et al., Psychopharmacol, 2005) • Vit C: Hb denaturation in G-6 -PD def.(Papandreou & Rakitzis, 1990) • Vit E: antioxidative enzymes in erythrocytes(Eder et al., 2002) • Both Vit C & E do not • reduce risk of dementia • or PD(CNS Drugs 2003;Cummings, • N Engl J Med 2004) • Vit E but not Vit C • could have a role in ALS • prevention: clinical trials • (Ascherio et al., Ann Neurol 2005) Antioxidant vitamins Ascorbic acid (vit C) Alpha-tocopheral (vit E) Antioxidants Pro-oxidants
Antiamyloidogenic activity (in cell culture) +retinol: 6 h Control: 0 h Electronmicrograph of fibril extension Control: 6 h Vitamin A & beta-carotene (Ono et al., Exp Neurol 2004) retinol = retinal > beta-carotene > retinoic acid. Vitamins B2, B6, C, and E at 50 and 100 μM had no inhibitory effect
Plant Polyphenols -Ginkgo biloba (EGb) -Catechins -Caffeic acid phenethyl ester (from honeybee’s propolis)
Control +50 mg/kg EGb 10 mg 6-OHDA The expression of tyrosine hydroxylase (DA neuron) in substantia nigra of rat (PD model) +150 mg/kg EGb +100 mg/kg EGb • antioxidant • free radical scavenging • MAO-B inhibiting • DA-enhancing mechanisms EGb=Gingko biloba extract 3 wks pretreatment Rescue the DA neurons (PD model) (Ahmad et al., J Neurochem, 2005) Ginkgo biloba (EGb) แปะก๊วย Flavonoids Free radical scavengers Egb had small but significant effect in AD patients (Cummings, N Engl J Med 2004)
Camellia sinensis EGCG as an intervention of cerebral ischemia EGCG: modulation of cell death gene in Parkinson’s model Infarc Size (mm3) 50mg/kg EGCG i.p., after ischemia; rats were killed 72h post ischemia. (Mandel& Youdim, Free Rad Biol Med 2004) (Rahman et al., Neurosci Lett 2005) Catechins A group of flavonoids; ~30-45% of the solid green tea extract ~10% (-)-epigallocatechin-3-gallate (EGCG) (-)-epigallocatechin (EGC) Antioxidant prop. EGCG=ECG>EGC>EC (-)-epicatechin (EC) (-)-epicatechin-3-gallate (ECG) EGCG=potential candidate for the treatment of neurodegenerative disorders
Control 6-OHDA Effect of CAPE (mM) on Ca2+-induced Cyt-C release in rat liver mitochondria 6-OHDA + CAPE Cultured cerebellar granule neurons (CGN) red fluorescent=death neuron Propolis = neuroprotectant; a good candidate for in vivo models (Noelker et al., Neurosci Lett 2005) Caffeic acid phenethyl ester (CAPE) Active antioxidant flavonoids (45-55%) from honeybee propolis
Biochemical Pharmacology 70 (2005) 220-228 Model for MS: oral flavonoids fail to beneficially influence the course of EAE in mice but, instead, suppress recovery from acute inflammatory damage. (flavonoids tested-apigenin, luteolin, quercetin, hesperitin, morin, fisetin & curcumin)
360mg/day: therapeutic effect in HD patients (Korozhetz et al., Ann Neurol 1997) Slow down functional decline in PD patients (Frucht, CNS Drugs 2005) Protect DA neuronal death from pesticide rotenone (Moon et al., J Neurochem 2005) Human endogenous ligands Coenzyme Q10 (ubiquinone) =important antioxidant in both mitochondria and lipid membrane
Coenzyme Q10 has the potential to be used as a therapeutic intervention for neurodegenerative diseases. (Somayajulu et al., Neurobiol Dis 2005)
a-Lipoic acid (a-LA) A biological antioxidant , cofactor in many mitochondrial reactions EAE= experimental autoimmune encephalomyelitis; a model for MS a-LA=a potential therapy for MS (mechanisms other than its antioxidant activity) (Morini et al., J Neuroimmunol 2004)
Melatonin Natural compound of almost ubiquitous occurrence AMK=Melatonin metabolite (Hardeland & Pandi-Perumal, Nutr Met 2005)
Melatonin protect hippocampus from the effect of traumatic Brain Injury CA1 CA3 DG (Ozdemir et al.,Neurosci Lett 2005) Therapeutic trials with melatonin: slowing the progression of AD but not of PD. (Srinivasan et al., Neurotox Res 2005)
Antioxidant effects Neurotransmitter receptors Membrane binding sites Neurotrophin receptors Interaction with neurotrophin signal transduction pathways Rapid non-genomic intracellular responses Modulation of neurotransmitter systems Female sex hormone: Estrogen & Phytoestrogens Estrogen receptors (intracellular) -ERa -ERb Modulation of gene transcription Inhibition of cell death Anti-inflammatory activity Neurotrophic effects (Amantea et al., Pharmacol Res, 2005)
A brain selective estrogen receptor modulator (NeuroSERM) (Brinton, 2004) Phytoestrogens= natural SERMs ERT A non-feminizing estrogen, 2-(1-adamantyl)-4- methylestrone (ZYC-26) (Perez et al., 2005) Rat’s brain: cognitive area Estroge & Brain Plasticity Estrogen supplement increase dendritic knob Estrogen supplement Control Estrogen Replacement Therapy: risk (uterine & breast cancer) VS benefit?
Pueraria mirifica (กวาวเครือ) : isoflavonoids Soy isoflavones: Genistein, Daiazein, Glycitein etc. Soy isoflavone glycitein protects against betaamyloid -induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. Gutierrez-Zepeda et al., BMC Neurosci 2005 May have therapeutic potential for prevention of Ab associated neurodegenerative disorders Caenorhabditis elegans (C. elegans) Glycitein Phytoestrogens
Antioxidant treatment for ALS The Cochrane Library 2005, Issue 3 Main results -No significant effect on the primary outcome measure was observed in a meta-analysis of antioxidants in general when combining the results. -No significant differences were demonstrated in secondary outcome measures Author’s conclusion -While there is no substantial clinical trial evidence to support their clinical use, there is no clear contraindication.
Antioxidant treatment for HD Antioxidant efficacy was not observed in human clinical trial. Studies have been planned for other free-radical scavengers. (Gardian & Veesei, J Neural Trans 2004)
Clinical evidence that antioxidants agents may prevent or slow the course of these diseases is still relatively unsatisfactory, and unsufficient to strongly modify the clinical practice. (Casetta et al., Curr Pharm Des. 2005) Antioxidants and neurology
Normal neurons Damaged neurons Neuronal Cell Death
-enzymes: SOD, Catalase -others: vit.C, vit.E Oxidative metabolism MAO-B -(PD) DA DOPAC mismatch .OH + OH- -Inflammation (MS) Genetic defect: e.g. Mutation of SOD1 & ALS Oxidative stress Excitotoxicity (Trauma, Stroke, Aging) Abnormal proteins Mitochondrial dysfunction & cell damage -Alzheimer’s disease & b amyloid -Prion protein & Prion disease (Mad cow) Energy deprivation & Cell death Oxidants & Neurodegenerative disorders Free radicals cellular defence mechanism
EGCG polyphenols VDAC=Voltage dependent anion channel ANT=Adenosine nucleotide translocase PBR=Peripheral benzodiazepine receptor CK=Creatinine kinase CyD=Cyclophilin D Neurotoxin-induced ROS Green Tea Polyphenols Suggested potential targets of EGCG ? Radical scavenging Iron chelation Increasing antioxidant defense ANT VDAC X ? sAPPa PKC NEUROPROTECTION COMT Apoptotic genes Ab fibrils (Mandel & Youdim, Free Rad Biol Med 2004; Weinreb et al., J Nutr Biochem 2004))