370 likes | 401 Views
Finding minimizer Gradient, Newton’s Algo., Conjugate gradient, Rank one, DFP Algo. Intelligent Information System Lab. Dept. of Computer and Information Science Korea Univ. Sohn Jong-Soo mis026@korea.ac.kr. Index. Algorithms
E N D
Finding minimizerGradient, Newton’s Algo., Conjugate gradient, Rank one, DFP Algo. Intelligent Information System Lab. Dept. of Computer and Information Science Korea Univ. Sohn Jong-Soo mis026@korea.ac.kr
Index • Algorithms • Gradient, Newton’s method, Conjugate direction, Quasi-newton method • Problems • 10.7, 10.8 • Probem solving • To solve the problems using each algorithms • Performance analysis • Conclusion
Algorithms • Gradient • Conjugate direction method • Conjugate gradient method • Newton’s method • Quasia-Newton methods • Rank – one algorithm • DFP algorithm
Gradient • Gradient method • f(x(0) – α∇f(x(0)) < f(x(0)) • x(k+1) = x(k) – αk∇f(x(k)) • Method of steepest desendent • αk = arg min ( f(x(k) – α∇f(x(k))
Conjugate gradient • Set k := 0; select the initial point x(0) • g(0) = ∇f(x(0)). If g(0) = 0, stop, else set d(0) = -g(0) • αk = - ( g(k)Td(k) / d(k)TQd(k) ) • x(k+1) = x(k) + αkd(k) • g(k+1) = ∇f(x(k+1)).If g(k+1) = 0, stop • βk = ( g(k+1)TQd(k) / d(k)TQd(k) ) • d(k+1) = -g(k+1) + βkd(k) • Set k := k +1 ; go to step 3.
Newton’s method • f(x) ≈ f(x(k)) + (x – x(k))Tg(k) + ½(x-x(k))TF(x(k))(x-x(k)≜ q(x) • 0 = ∇q(x) = g(k) + F(x(k))(x – x(k)) • x(x+1) = x(k) – F(x(k))-1g(k)
Rank one algorithm • Set k := 0; select x(0), and a real symmetric positive definite H0 • If g(k) = 0, stop; else d(k) = -Hkg(k) • Compute • αk = arg min f(x(k) + αd(k)) • x(k+1) = x(k) + αkd(k) • Compute • ∆x(k) = αkd(k) • ∆g(k) = g(k+1) - g(k) • Hk+1 = Hk + ( (∆x(k) - Hk ∆g(k))(∆x(k) - Hk ∆g(k))T / ∆g(k)T(∆x(k) - Hk ∆g(k)) ) • Set k := k + 1 ; go to step 2
DFP algorithm • Set k := 0 ;select x(0), and a real symmetric positive definite H0 • If g(k) = 0, stop; else d(k) = -Hkg(k) • Compute • αk = arg min f(x(k) + αd(k)) • x(k+1) = x(k) + αkd(k) • Compute • ∆x(k) = αkd(k) • ∆g(k) = g(k+1) – g(k) • Hk+1 = Hk + (∆x(k) ∆x(k)T / ∆x(k)T ∆g(k)) –( [Hk ∆g(k)][Hk ∆g(k)]T / ∆g(k)THk ∆g(k) ) • Set k := k + 1; go to step 2
Problems • Exercise 10.7 • Let f(x), x = [x1, x2]T ∈ R2, be given by • Exercise 10.8 • Rosenbrock’s function
Problem solving – 10.7 • Gradient method • Starting point • [1 , 1] • Tolerance : 0.001 . . step(4): X : 0.9049 -0.7717 g : -0.0014 -0.0011 f(x) : -0.9948 alpha: 5.00000 step(5): X : 1.0000 -0.9620 g : 0.0347 0.0767 f(x) : -0.9993 alpha: 0.17241 step(6): X : 0.9869 -0.9685 g : -0.0000 -0.0000 f(x) : -0.9999 alpha: 5.00000 step(7): X : 1.0000 -0.9948 g : 0.0007 0.0015 f(x) : -1.0000 alpha: 0.17241 step(8): X : 0.9982 -0.9957 g : -0.0000 -0.0000 f(x) : -1.0000 alpha: 5.00000 step(9): X : 1.0000 -0.9993 g : 0.0000 0.0000 f(x) : -1.0000 alpha: 0.17241
Problem solving – 10.7 • Gradient method • Starting point • [5 , 1] • Tolerance : 0.001 step(1): X : 5.0000 1.0000 alpha: 0.17157 step(2): X : 0.8822 -0.7157 g : -0.0023 -0.0018 f(x) : -0.9919 alpha: 5.82759 step(3): X : 1.0006 -0.9997 g : 0.0001 0.0001 f(x) : -1.0000 alpha: 0.17157
Problem solving – 10.7 • Gradient method • Starting point • [-1 , 4] • Tolerance : 0.001 . . . step(48): X : 0.9882 -0.9764 g : 0.0006 0.0013 f(x) : -0.9999 alpha: 0.20000 step(49): X : 0.9906 -0.9764 g : -0.0000 0.0000 f(x) : -0.9999 alpha: 1.00000 step(50): X : 0.9906 -0.9811 g : 0.0004 0.0008 f(x) : -1.0000 alpha: 0.20000 step(51): X : 0.9924 -0.9811 g : 0.0000 0.0000 f(x) : -1.0000 alpha: 1.00000 step(52): X : 0.9924 -0.9849 g : 0.0002 0.0005 f(x) : -1.0000 alpha: 0.20000 step(53): X : 0.9940 -0.9849 g : 0.0000 0.0000 f(x) : -1.0000 alpha: 1.00000 step(54): X : 0.9940 -0.9879 g : 0.0001 0.0003 f(x) : -1.0000 alpha: 0.20000
Problem solving – 10.7 • ConjugateGradient method • Starting point • [1 , 1] • Tolerance : 0.001 stage(1): g = [ -0.137931 0.275862 ] , x = [ 0.310345 0.655172] stage(2): g = [ -0.000000 -0.000000 ] , x = [ 1.000000 -1.000000]
Problem solving – 10.7 • ConjugateGradient method • Starting point • [5 , 1] • Tolerance : 0.001 stage(1): g = [ -0.020305 0.048731 ] , x = [ 0.882234 -0.715736]
Problem solving – 10.7 • ConjugateGradient method • Starting point • [-1 , 4] • Tolerance : 0.001 stage(1): g = [ -2.000000 0.000000 ] , x = [ -1.000000 3.000000] stage(2): g = [ 0.000000 0.000000 ] , x = [ 1.000000 -1.000000]
Problem solving – 10.7 • Newton’s method • Starting point • [1 , 1] • Tolerance : 0.001 step(1): X : 1.0000 -1.0000 g : 0.0000 4.0000 f(x) : -1.0000 alpha: 1.00000 step(2): X : 1.0000 -1.0000 g : 0.0000 0.0000 f(x) : -1.0000 alpha: 1.00000
Problem solving – 10.7 • Newton’s method • Starting point • [5 , 1] • Tolerance : 0.001 step(1): X : 1.0000 -1.0000 g : -0.0000 116.0000 f(x) : -1.0000 alpha: 1.00000 step(2): X : 1.0000 -1.0000 g : 0.0000 0.0000 f(x) : -1.0000 alpha: 1.00000
Problem solving – 10.7 • Newton’s method • Starting point • [300 , 300] • Tolerance : 0.0000001 stage(1): g = [ -10.739497 25.050862 ] , x = [ -59.841222 145.733306] stage(2): g = [ 0.000000 0.000000 ] , x = [ 1.000000 -1.000000]
Problem solving – 10.7 • Newton’s method • Starting point • [-1 , 4] • Tolerance : 0.001 step(1): X : 1.0000 -1.0000 g : 0.0000 5.0000 f(x) : -1.0000 alpha: 1.00000 step(2): X : 1.0000 -1.0000 g : 0.0000 -0.0000 f(x) : -1.0000 alpha: 1.00000
Problem solving – 10.7 • Rank-one • Starting point • [1 , 1] • Tolerance : 0.001 step(1): X : 1.0000 1.0000 g : 4.0000 2.0000 alpha: 0.17241 step(2): X : 0.3103 0.6552 g : -0.1379 0.2759 alpha: 5.83333 step(3): X : 1.0000 -1.0000 g : 0.0000 0.0000 alpha: 5.83333
Problem solving – 10.7 • Rank-one • Starting point • [5 , 1] • Tolerance : 0.001 step(1): X : 5.0000 1.0000 g : 24.0000 10.0000 alpha: 0.17157 step(2): X : 0.8822 -0.7157 g : -0.0203 0.0487 alpha: 5.82843 step(3): X : 1.0000 -1.0000 g : 0.0000 0.0000 alpha: 5.82843
Problem solving – 10.7 • DFP • Starting point • [1 , 1] • Tolerance : 0.001 Stage(1): g=[ 4.000000 2.000000 ] alpha=0.172414 x=[ 1.000000 1.000000 ] Stage(2): g=[ -0.137931 0.275862 ] alpha=5.827586 x=[ 0.310345 0.655172 ] Stage(3): g=[ 0.000000 0.000000 ] alpha=5.827586 x=[ 1.000000 -1.000000 ]
Problem solving – 10.7 • DFP • Starting point • [5 , 1] • Tolerance : 0.001 Stage(1): g=[ 24.000000 10.000000 ] alpha=0.171574 x=[ 5.000000 1.000000 ] Stage(2): g=[ -0.020305 0.048731 ] alpha=5.828426 x=[ 0.882234 -0.715736 ] Stage(3): g=[ 0.000000 0.000000 ] alpha=5.828426 x=[ 1.000000 -1.000000 ]
Problem solving – 10.7 • DFP • Starting point • [-1 , 4] • Tolerance : 0.001 Stage(1): g=[ 0.000000 1.000000 ] alpha=1.000000 x=[ -1.000000 4.000000 ] Stage(2): g=[ -2.000000 0.000000 ] alpha=5.000000 x=[ -1.000000 3.000000 ] Stage(3): g=[ -0.000000 -0.000000 ] alpha=5.000000 x=[ 1.000000 -1.000000 ]
Performance analysis of Algorithms • Exercise 10.7
Problems • Exercise 10.7 • Let f(x), x = [x1, x2]T ∈ R2, be given by • Exercise 10.8 • Rosenbrock’s function
Problem solving – 10.8 • Conjugate gradient • Starting point • [-2, 2] • Tolerance : 0.001 stage(1): g = [ -332.501269 -101.418013 ] , x = [ -1.613492 2.096266 ] stage(2): g = [ -142.448702 -37.455614 ] , x = [ -1.826114 3.147416 ] stage(3): g = [ -41.353455 -10.765649 ] , x = [ -1.672388 2.743052 ] stage(4): g = [ -33.996781 -8.468644 ] , x = [ -1.689618 2.812465 ] stage(5): g = [ -36.948543 -11.218869 ] , x = [ -1.430106 1.989107 ] stage(6): g = [ -21.953885 -5.840852 ] , x = [ -1.458436 2.097830 ] . . . stage(32): g = [ 0.547441 -0.390674 ] , x = [ 0.915901 0.836922 ] stage(33): g = [ 0.413761 -0.245702 ] , x = [ 0.968836 0.937414 ] stage(34): g = [ 0.330438 -0.203535 ] , x = [ 0.968164 0.936324 ] stage(35): g = [ 0.240281 -0.126425 ] , x = [ 0.994421 0.988241 ] stage(36): g = [ 0.066990 -0.040594 ] , x = [ 0.993178 0.986200 ] stage(37): g = [ 0.006614 -0.003654 ] , x = [ 0.999654 0.999290 ] stage(38): g = [ 0.003991 -0.002363 ] , x = [ 0.999633 0.999255 ] stage(39): g = [ 0.000042 -0.000022 ] , x = [ 0.999999 0.999998 ]
Problem solving – 10.8 • Conjugate gradient • Starting point • [-2, 2] • Tolerance :0.0000001 stage(1): g = [ -332.501269 -101.418013 ] , x = [ -1.613492 2.096266 ] stage(2): g = [ -142.448702 -37.455614 ] , x = [ -1.826114 3.147416 ] stage(3): g = [ -41.353455 -10.765649 ] , x = [ -1.672388 2.743052 ] stage(4): g = [ -33.996781 -8.468644 ] , x = [ -1.689618 2.812465 ] stage(5): g = [ -36.948543 -11.218869 ] , x = [ -1.430106 1.989107 ] stage(6): g = [ -21.953885 -5.840852 ] , x = [ -1.458436 2.097830 ] stage(7): g = [ -33.435609 -12.506830 ] , x = [ -1.163693 1.291647 ] . . . stage(33): g = [ 0.413761 -0.245702 ] , x = [ 0.968836 0.937414 ] stage(34): g = [ 0.330438 -0.203535 ] , x = [ 0.968164 0.936324 ] stage(35): g = [ 0.240281 -0.126425 ] , x = [ 0.994421 0.988241 ] stage(36): g = [ 0.066990 -0.040594 ] , x = [ 0.993178 0.986200 ] stage(37): g = [ 0.006614 -0.003654 ] , x = [ 0.999654 0.999290 ] stage(38): g = [ 0.003991 -0.002363 ] , x = [ 0.999633 0.999255 ] stage(39): g = [ 0.000042 -0.000022 ] , x = [ 0.999999 0.999998 ] stage(40): g = [ 0.000013 -0.000008 ] , x = [ 0.999999 0.999998 ] stage(41): g = [ 0.000000 -0.000000 ] , x = [ 1.000000 1.000000 ]
Problem solving – 10.8 • Conjugate gradient • Starting point • [2, 2] • Tolerance : 0.001 stage(1): g = [ 330.655526 -102.025414 ] , x = [ 1.614434 2.096271 ] stage(2): g = [ 135.762583 -36.574527 ] , x = [ 1.833191 3.177717 ] stage(3): g = [ 42.049249 -11.979660 ] , x = [ 1.696857 2.819425 ] stage(4): g = [ 19.978221 -5.261054 ] , x = [ 1.755153 3.054258 ] stage(5): g = [ 4.384471 -0.924629 ] , x = [ 1.658623 2.746409 ] stage(6): g = [ 11.937054 -3.274119 ] , x = [ 1.630401 2.641836 ] stage(7): g = [ 23.733754 -7.660550 ] , x = [ 1.485688 2.168967 ] stage(8): g = [ 0.557551 0.135458 ] , x = [ 1.479136 2.188521 ] stage(9): g = [ 106.318780 -54.952470 ] , x = [ 0.967954 0.662172 ] stage(10): g = [ 82.367678 -35.628666 ] , x = [ 1.151662 1.148182 ] stage(11): g = [ 21.540766 -10.429636 ] , x = [ 1.029813 1.008366 ] stage(12): g = [ 8.471463 -3.771332 ] , x = [ 1.097331 1.185279 ] stage(13): g = [ 2.442372 -1.111322 ] , x = [ 1.052036 1.101222 ] stage(14): g = [ 1.522402 -0.657932 ] , x = [ 1.062288 1.125166 ] stage(15): g = [ 0.320738 -0.128530 ] , x = [ 1.028213 1.056579 ] stage(16): g = [ 0.536080 -0.236203 ] , x = [ 1.025754 1.050991 ] stage(17): g = [ 0.261000 -0.125680 ] , x = [ 1.004282 1.007954 ] stage(18): g = [ 0.089963 -0.039049 ] , x = [ 1.005710 1.011257 ] stage(19): g = [ 0.004208 -0.001811 ] , x = [ 1.000292 1.000576 ] stage(20): g = [ 0.004793 -0.002109 ] , x = [ 1.000287 1.000563 ] stage(21): g = [ 0.000036 -0.000017 ] , x = [ 1.000001 1.000001 ]
Problem solving – 10.8 • Conjugate gradient • Starting point • [300, 300] • Tolerance : 0.001 stage(1): g = [ 3186655073.835467 -7957781.328504 ] , x = [ 200.222559 300.166296 ] stage(2): g = [ 1387227021.306565 -2660822.303905 ], x = [ 260.676277 54648.009682 ] stage(3): g = [ 416041624.719386 -923574.649366 ], x = [ 225.234190 46112.567133 ] stage(4): g = [ 157179285.355639 -319357.541938 ], x = [ 246.085930 58961.497052 ] . . . stage(196): g = [ 0.089707 -0.054861 ] , x = [ 0.990513 0.980842 ] stage(197): g = [ 0.012199 -0.006749 ] , x = [ 0.999355 0.998676 ] stage(198): g = [ 0.007436 -0.004404 ] , x = [ 0.999317 0.998612 ] stage(199): g = [ 0.000145 -0.000076 ] , x = [ 0.999997 0.999993 ] stage(200): g = [ 0.000044 -0.000026 ] , x = [ 0.999996 0.999992 ] stage(201): g = [ 0.000000 -0.000000 ] , x = [ 1.000000 1.000000 ] stage(202): g = [ 0.000000 -0.000000 ] , x = [ 1.000000 1.000000 ] stage(203): g = [ 0.000000 0.000000 ] , x = [ 1.000000 1.000000 ]
Problem solving – 10.8 • Newton’s method • Starting point • [-2, 2] • Tolerance : 0.001 stage(1) g = [ -0.067163 799.776243 ] x = [ -1.992534 3.966104 ] alpha = 0.997985 stage(2) g = [ 2934.178339 23509.879768 ] x = [ -1.757191 3.028832 ] alpha = 0.142922 stage(3) g = [ -0.777980 2.240276 ] x = [ -1.447038 2.023481 ] alpha = 1.437352 stage(4) g = [ -0.834947 -0.446648 ] x = [ -1.048088 1.042159 ] alpha = 2.459842 stage(5) g = [ -0.631373 0.036704 ] x = [ -0.719034 0.463415 ] alpha = 1.970720 . . . stage(31) g = [ 0.055759 0.897840 ] x = [ 1.234722 1.510596 ] alpha = 0.815693 stage(32) g = [ -0.026218 -0.013331 ] x = [ 1.061162 1.121055 ] alpha = 2.801268 stage(33) g = [ -0.002457 0.000322 ] x = [ 1.008215 1.017365 ] alpha = 1.733026 stage(34) g = [ 0.000055 0.000552 ] x = [ 0.999582 0.999205 ] alpha = 0.868278 stage(35) g = [ 0.000000 0.000001 ] x = [ 1.000003 1.000005 ] alpha = 0.998378 stage(36) g = [ 0.000050 -0.000022 ] x = [ 1.000003 1.000005 ] alpha = 0.998378
Problem solving – 10.8 • Newton’s method • Starting point • [-2, 2] • Tolerance : 0.0000001 stage(1) g = [ -0.067163 799.776243 ] x = [ -1.992534 3.966104 ] alpha = 0.997985 stage(2) g = [ 2934.178339 23509.879768 ] x = [ -1.757191 3.028832 ] alpha = 0.142922 stage(3) g = [ -0.777980 2.240276 ] x = [ -1.447038 2.023481 ] alpha = 1.437352 stage(4) g = [ -0.834947 -0.446648 ] x = [ -1.048088 1.042159 ] alpha = 2.459842 stage(5) g = [ -0.631373 0.036704 ] x = [ -0.719034 0.463415 ] alpha = 1.970720 stage(6) g = [ -0.506735 -0.207360 ] x = [ -0.380849 0.100645 ] alpha = 2.305497 . . stage(32) g = [ -0.026218 -0.013331 ] x = [ 1.061162 1.121055 ] alpha = 2.801268 stage(33) g = [ -0.002457 0.000322 ] x = [ 1.008215 1.017365 ] alpha = 1.733026 stage(34) g = [ 0.000055 0.000552 ] x = [ 0.999582 0.999205 ] alpha = 0.868278 stage(35) g = [ 0.000000 0.000001 ] x = [ 1.000003 1.000005 ] alpha = 0.998378 stage(36) g = [ -0.000000 0.000000 ] x = [ 1.000000 1.000000 ] alpha = 0.999314 stage(37) g = [ 0.000000 -0.000000 ] x = [ 1.000000 1.000000 ] alpha = 0.999314
Problem solving – 10.8 • Quasi-Newton DFP Method • Starting point • [-1 1] • Tolerance : 0.001
Problem solving – 10.8 • Quasi-Newton DFP Method • Starting point • [-5 5] • Tolerance : 0.001
Performance analysis of Algorithms • Exercise 10.8
Conclusion • Ex 10.7 • Well defined function • Easy to solve • Good performance at each Algorithms • Ex 10.8 • Rosenbrock’s function • Hard to solve • Hard to make quadratic formula • Bad performance