1 / 51

Tutorial 2, Part 2: Calibration of a damped oscillator

Tutorial 2, Part 2: Calibration of a damped oscillator. Damped oscillator. Mass m , damping c , stiffness k and initial kinetic energy Equation of motion:. Undamped eigen-frequency: Lehr's damping ratio D Damped eigen-frequency. Damped oscillator.

nhu
Download Presentation

Tutorial 2, Part 2: Calibration of a damped oscillator

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tutorial 2, Part 2: Calibration of a damped oscillator

  2. Damped oscillator • Mass m, damping c, stiffness k and initial kinetic energy • Equation of motion: • Undamped eigen-frequency: • Lehr's damping ratio D • Damped eigen-frequency Tutorial: Calibration

  3. Damped oscillator • Time-dependent displacement function • Identification of the input parameters m, k, D and Ekin to optimally fit a reference displacement function • Objective function is the sum of squared errors between the reference and the calculated displacement function values Tutorial: Calibration

  4. Task description • Parametrization of the input parameters • Parametrization of the displacement vs. time functions as signals • Extraction of objective from output and reference signals • Definition and evaluation of a sensitivity analysis • Check for dependent parameters • Identification of the damper parameters using global and local optimization strategies • Identification using noisy reference function • Estimation of model representation quality Tutorial: Calibration

  5. Project manager 1. 2. 3. • Open the project manager • Define project name • Create a new project directory • Copy optiSLang Examples/Oscillator into project directory Tutorial: Calibration

  6. Parameterization of the problem 1. 2. 3. 4. 5. • Start a new parametrize workflow • Define workflow name • Create a new problem specification • Enter problem file name Tutorial: Calibration

  7. Parameterization of the inputs 1. 2. 3. • Click “open file” icon in parametrize editor • Browse for the SLang input file oscillator.s • Choose file type as INPUT Tutorial: Calibration

  8. Parameterization of the inputs 2. 1. 3. • Mark value of m in the input file • Define m as input parameter • Define parameter name Tutorial: Calibration

  9. Parameterization of the inputs 1. 2. • Open parameter in parameter tree • Enter lower and upper bounds (0.1 … 5.0) • Repeat procedure for k, D, Ekin Tutorial: Calibration

  10. Parameterization of the inputs Tutorial: Calibration

  11. Parameterization of the inputs Tutorial: Calibration

  12. Parameterization of the output signal 1. 2. 3. • Click “open file” icon in parametrize editor • Browse for the SLang output file oscillator_signal.txt • Choose file type as OUTPUT Tutorial: Calibration

  13. Parameterization of the output signal 2. 1. 3. • Mark output object string in editor • Add string to repeated block marker set • Select “set super marker”, set start, increment, end values and “single steps” Tutorial: Calibration

  14. Parameterization of the output signal 2. 1. 3. 4. • Mark first value of time column • Add string to a vector • Select marker • Define name of vector Tutorial: Calibration

  15. Parameterization of the output signal 1. 2. • Repeat for the displacement column • Block marker and vectors appear in parameter tree Tutorial: Calibration

  16. Definition of the output signal object 1. 2. 3. 4. 1. • Create a new signal object • Define signal object disp_time and activate • Choose abscissa reference and define label • Add disp as signal channel • Define channel name, label and activate Tutorial: Calibration

  17. Parameterization of the reference signal 1. 2. 3. • Click “open file” icon in parametrize editor • Browse for the SLang output file oscillator_reference.txt • Choose file type as OUTPUT Tutorial: Calibration

  18. Parameterization of the reference signal 2. 1. 3. • Mark output object string in editor • Add string to repeated block marker set • Select “set super marker”, set start, increment, end values and “single steps” Tutorial: Calibration

  19. Parameterization of the reference signal 2. 1. 3. 4. • Mark first value of time column • Add string to a vector • Select marker • Define name of vector Tutorial: Calibration

  20. Parameterization of the reference signal 2. 1. 3. 4. • Mark first value of displacement column • Add string to a vector • Select marker • Define name of vector Tutorial: Calibration

  21. Parameterization of the reference signal 2. 1. 3. 4. • Mark first value of second displacement column (noisy reference) • Add string to a vector • Select marker • Define name of vector Tutorial: Calibration

  22. Parameterization of the reference signal 2. 1. • Open the reference vectors in the parameter tree • Set vectors as active and constant Tutorial: Calibration

  23. Definition of the reference signal object 1. 2. 3. 4. • Create a new signal object • Define signal object disp_time_ref and activate and set as constant • Choose abscissa reference and define label • Add disp_ref and disp_ref_noise as channels • Define channel name, label and activate 1. Tutorial: Calibration

  24. Definition of difference from reference 2. 1. 2. 1. • Create a signal function • Add signal function SIG_DIFF_EUCLID as difference between solver output and reference channel Tutorial: Calibration

  25. Definition of maximum values in time slots 2. 1. • Create new signal functions • Add signal functions SIG_MAX_Y and SIG_MAX_Y_SLOT to get maximum displacement values after a certain time (0, 2, 4, 6, 8s) Tutorial: Calibration

  26. Definition of difference from noisy reference 2. 1. • Create new signal functions • Add signal function SIG_DIFF_EUCLID as difference between solver output and noisy reference channel Tutorial: Calibration

  27. Definition of objective functions 2a. 2b. 1. • Create new objective function • Define objective as difference between solver output and reference channel (second objective using noisy reference) Tutorial: Calibration

  28. Parameterization of the problem 1. 2. • Close parametrization editor • Check overview for inputs • Check overview for outputs Tutorial: Calibration

  29. Parameterization of the problem 1. 2. • Check overview for signals • Check overview for objectives Tutorial: Calibration

  30. Design Of Experiments (DOE) 2. 1. 2. 3. • Start a new DOE workflow • Define workflow name and workflow identifier • Enter problem file name Tutorial: Calibration

  31. Design Of Experiments (DOE) 1. • Enter solver call (slang –b oscillator.s) • Start DOE evaluation with 100 LHS samples Tutorial: Calibration

  32. Design Of Experiments (DOE) 100 samples • Coefficient of Determination of quadratic approximation of rmse_all_diff is very low (38% CoD) • Single values as maximum in time slot can be approximated much better (96% - 99% CoD) Tutorial: Calibration

  33. Meta-Model of Optimal Prognosis (MOP) 2. 3. 1. 4. • Start a new MOP workflow • Define workflow name • Define workflow identifier • Choose DOE result file Tutorial: Calibration

  34. Meta-Model of Optimal Prognosis (MOP) 1. 4. 2. 3. • CoP settings (sample splitting or cross validation) • Investigated approximation models • Set DCoP (accepted reduction in prediction quality to simplify model) to 0.01 • Filter settings Tutorial: Calibration

  35. Meta-Model of Optimal Prognosis (MOP) 100 samples • Coefficient of Prognosis of rmse_all_diff is very low (45% CoP) and only m and k are found to be significant • CoP of maximum values in time slot are much better (95% - 99% CoD) and all inputs are indicated to be significant Tutorial: Calibration

  36. Meta-Model of Optimal Prognosis (MOP) 100 samples 500 samples 2000 samples • Coefficient of Prognosis of rmse_all_diff increases if number of samples is increased (from 45% to 84%) and additionally Ekin becomes significant • Sensitivity study of objective function itself may require many samples due to a certain complexity • Analysis of single values may be more efficient Tutorial: Calibration

  37. Meta-Model of Optimal Prognosis (MOP) • All inputs are significant for at least some of the output values • Identification of all input parameters is generally possible Tutorial: Calibration

  38. Evolutionary algorithm (global search) 2. 1. 2. 3. 4. • Start a new NOA workflow • Define workflow name and workflow identifier • Enter problem file name • Choose optimization algorithm (EA with global search as default) • Enter solver call (slang –b oscillator.s) and start workflow Tutorial: Calibration

  39. Evolutionary algorithm (global search) 1. • Choose start population size • Keep defaults for Selection, Crossover and Mutation Tutorial: Calibration

  40. Evolutionary algorithm (global search) • Global optimization converges to small difference between output and reference Tutorial: Calibration

  41. Dependent parameters Run 1: RMSE=0.183 Run 2: RMSE=0.434 • Different optimization runs lead to different parameter sets with similar differences Tutorial: Calibration

  42. Dependent parameters Reason for non-unique solution: • The parameters Ekinand m as well as k and m appear only pair-wisely in the displacement function • Only the ratio between Ekinand m as well as k and m can be identified • We keep the value of m as constant General procedure: • Check designs from DOE with almost equal objective values • Or perform multiple global optimization runs • Sensitivity indices quantify the global influence of each input,But: the dependency between input parameters with respect to the minimum objective values can not be identified Tutorial: Calibration

  43. Modify the parametrization 1. 2. 3. 4. 5. • Start a new parametrize workflow • Define workflow name • Create a copy and modify it • Enter original problem file name • Enter new problem file name Tutorial: Calibration

  44. Modify the parametrization 2. 3. 4. • Open the parameter m in the parameter treee • Modify reference value • Set parameter as constant • Close parametrization editor and check inputs Tutorial: Calibration

  45. Evolutionary algorithm (global search) Run 1: RMSE=1.587 Run 2: RMSE=0.287 Run 3: RMSE=0.769 • Different optimization runs lead to similar parameter sets with similar differences • No parameter dependencies Tutorial: Calibration

  46. Gradient-based optimization 2. 2. 3. 4. • Start a new Gradient-based workflow • Define workflow name and workflow identifier • Enter problem file name • Choose optimization method • Enter solver call (slang –b oscillator.s) • Start gradient workflow Tutorial: Calibration

  47. Gradient-based optimization 2. 1. • Decrease size of differentiation interval • Choose best design from EA optimization as start value 2. Tutorial: Calibration

  48. Gradient-based optimization • Local gradient-based optimization gives exact reference values for inputs • Fitting is perfect (almost zero rmse) Tutorial: Calibration

  49. Identification using noisy reference • Measurements are more or less precise • Reference displacement function is disturbed by Gaussian noise with zero mean and standard deviation of 0.1 m • Second objective is used for parameter identification • Again global + local optimization with reduced input parameter set k, D and Ekin Tutorial: Calibration

  50. Identification using noisy reference Evolutionary Algorithm(global search) Tutorial: Calibration

More Related