360 likes | 502 Views
Electronic Structure of Molecules AST380E Yancy L. Shirley. Where do we find molecules ?. Orion in CO J=2-1. Molecular Clouds & Star Formation Regions. VLT, Japan. Brown Dwarfs: Gliese 229B. CH 4 Absorption. Geballe, et al. 1995. Planetary Atmospheres. Voyager, NASA.
E N D
Electronic Structure of Molecules AST380E Yancy L. Shirley
Where do we find molecules ? Orion in CO J=2-1 Molecular Clouds & Star Formation Regions VLT, Japan
Brown Dwarfs: Gliese 229B CH4 Absorption Geballe, et al. 1995
Planetary Atmospheres Voyager, NASA ISO Spectrum of Jupiter C2H2 C2H6 CH3D NH3 CH4 PH3
Comets: Hale-Bopp HCN J=4-3 D. Jewitt, U. Hawaii
Evolved Stars: IRC10216 HCN BIMA Image C4H BIMA Image
Why do molecules form? Classical Argument e- + + R Stable molecule has e- with HIGH PROBABILITY of being found between nuclei
The Born-Oppenheimer Approximation e- rA rB p+ + + p+ R The H2+ Hamiltonian ignore Since the mass(p+) >> mass(e-) , we can ignore nuclear motion (the 1st term) and solve Schroedinger’s Eq. assuming a fixed nucleus.
Molecular Orbitals - LCAO + ANTI-BONDING BONDING + + + +
Anti-bonding p+ repulsion Bonding -13.6 eV Anti-symmetric Energy e- binding Energy Symmetric -54.4 eV Distance (nm) K. Krane, Modern Physics
Electronic State in a molecule L Lz E Electronic orbital angular momenta precess about internuclear axis due to strong electric field. Symbol: s , p , d
s Molecular Orbitals AO MO + + + Z 1s sg1s - + + - Z 1s su1s
s Molecular Orbitals AO MO - + + - - + - 2pz sg2pz - + - + - + - + su2pz 2pz
p Molecular Orbitals AO MO + + + Z - - - pu2px 2px - + - + Z - + - + pg2px
Correlation of Molecular Orbitals - Homonuclear Unified Atom Separated Atom G. Herzberg, Molecular Spectra & Molecular Strucutre , vol I.
Total Electronic Term of a Linear Molecule O L S S L W = |L + S| Total electronic term:
Symmetries of electronic state z -z Inversion yy g y -y y - y u x -x ONLY Applies to homonuclear linear molecules z z Reflection yy + y -y y - y - x x ONLY Applies to linear molecules in S states
H2+ E L = 0 S = ½ 2Sg+ sg1s
H2 E L = 0 S = 0 1Sg+ sg1s
He2+ E su1s L = 0 S = ½ 2Su+ sg1s
C2 E pu2p su2s sg2s su1s L = 0 S = 0 1Sg+ sg1s
N2 E sg2p pu2p su2s sg2s su1s L = 0 S = 0 1Sg+ sg1s
O2 E pg2p L = 0 S = 0 sg2p 1Sg+ pu2p L = 2 S = 0 su2s 1Dg sg2s su1s L = 0 S = 1 3Sg- sg1s Ground State
O2 (pg2p)2Configurations l1 l2 s1 s2 L S 1D 3S 1S
Bond Order Bond Energy Bond Length B2 C2 N2 O2 F2 Ne2 D. McQuarrie, Quantum Chemistry
Correlation of Molecular Orbitals - Heteronuclear Separated Atom Unified Atom G. Herzberg, Molecular Spectra & Molecular Strucutre , vol I.
OH E 2pp 2ps 2ss L = 1 S = ½ 2P 1ss
CO E s2pA p2pA s2sB s2sA s1sB L = 0 S = 0 1Sg+ s1sA
Photoelectron Spectrum CO s2sB s2sA p2pA s2pA # e- ejected Binding Energy D. McQuarrie, Quantum Chemistry
MO Notation D. McQuarrie, Quantum Chemistry
Ground Electronic State of a few Linear Molecules 1S H2, CH+, CO, CS, SiO, HCN, HCO+, N2H+, CO2, HCNH+, HC3N 2S H2+, CN, CO+, CCH 3S O2, NH, SO, CCS, C2O 2P CH, OH, NO
Excited States of H2 E sg2p L = 0 S = 0 C1Pu pu2p L = 0 S = 0 su2s B1Su+ sg2s L = 0 S = 1 su1s b3Su+ sg1s L = 0 S = 0 X1Sg+
UV Electronic Transitions: H2 Lyman Band Werner Band Shu, Radiation
Electronic Transitions: C2 Phillips Band