461 likes | 1.17k Views
Mechanics of Machines Dr. Mohammad Kilani. Class 4 Acceleration Analysis. Acceleration of a Point on an Ground Pivoted Link. Acceleration of a Point. Let the vector r = r u θ describe the position of a point. The velocity and acceleration of the point are given b. r. sin θ j. θ.
E N D
Mechanics of MachinesDr. Mohammad Kilani Class 4 Acceleration Analysis
Acceleration of a Point • Let the vector r = r uθ describe the position of a point. The velocity and acceleration of the point are given b r sinθj θ cosθi aslipanormalatangaCoriolis
Acceleration of a Point on an Ground Pivoted Link y • If the point is taken to be on a rigid link, that is pivoted to the ground, and the origin of the coordinate is taken to be the of the pivot point, then d2r/dt2 =dr/dt = 0, and we obtain • Define the vector ω = dθ/dtkand the vector α = d2θ/dt2kthen the acceleration of point P is given by A x
Acceleration of a Point Sliding on a Ground Pivoted Link aCoriolis r, dr/dt, d2r/dt2 ω
Acceleration Analysis of a Four Bar Mechanism • For a 4-bar kinematic chain with all links of constant lengths, the acceleration loop closure equation is found by starting with the position loop closure equation as follows: • Design Parameters: r1, r2, r3, r4, θ1 • Position Analysis Parameters: θ2, θ3, θ4 • Velocity Analysis Parameters: ω2, ω3, ω4 • Acceleration Analysis Parameters: α2, α 3, α4
Acceleration Analysis of a Four Bar Mechanism Design Parameters: r1, r2, r3, r4, θ1 Position Analysis Parameters: θ2, θ3, θ4 Velocity Analysis Parameters: ω2, ω3, ω4 Acceleration Analysis Parameters: α2, α3, α4 • To eliminate α3 dot product with uθ3
Acceleration Analysis of a Slider-Crank Mechanism • The acceleration loop closure equation is found by differentiating the position loop closure equation twice as follows equation • Design Parameters: r2, r3, r4, θ1 , θ4 • Position Analysis Parameters: θ2, θ3, r1 • Velocity Analysis Parameters: ω2, ω3, dr1/dt • Acceleration Analysis Parameters: α2, α 3, d2r1/dt2 r3 r4 rp r2 r1
Acceleration Analysis of a Slider-Crank Mechanism Design Parameters: r2, r3, r4, θ1 , θ4 Position Analysis Parameters: θ2, θ3, r1 Velocity Analysis Parameters: ω2, ω3, dr1/dt Acceleration Analysis Parameters: α2, α3, d2r1/dt2 • To find d2r1/dt2, eliminate α3 by dot product with uθ3 r3 r4 rp r2 r1
Acceleration Analysis of a Slider-Crank Mechanism Design Parameters: r2, r3, r4, θ1 , θ4 Position Analysis Parameters: θ2, θ3, r1 Velocity Analysis Parameters: ω2, ω3, dr1/dt Acceleration Analysis Parameters: α2, α3, d2r1/dt2 • To find α3 eliminate d2r1/dt2, by dot product with uθ1+π/2 r3 r4 rp r2 r1
Acceleration Analysis of an Inverted Slider-Crank Mechanism Design Parameters: r1, r2, θ1 Position Analysis Parameters: θ2, θ3, r3 Velocity Analysis Parameters: ω2, ω3, dr3/dt Acceleration Analysis Parameters: α2, α3, d2r3/dt2 • The acceleration loop closure equation is found by differentiating the position loop closure equation twice as follows equation θ3 r2 r3 r1 θ2 θ1
Acceleration Analysis of an Inverted Slider-Crank Mechanism Design Parameters: r1, r2, θ1 Position Analysis Parameters: θ2, θ3, r3 Velocity Analysis Parameters: ω2, ω3, dr3/dt Acceleration Analysis Parameters: α2, α3, d2r3/dt2 • To find d2r3/dt2 eliminate α3 by dot product with uθ3 • To find α3 eliminate d2r3/dt2 by dot product with uθ3+π/2 θ3 r2 r3 r1 θ2 θ1
Example: (Problem 7-48) F • L2 = 0.8 in, L3= 2.97 in, L5 = 2.61 inθ2 = 241°, O2O4 = 1.85 @ 278.5° • The problem is an inverted slider-crank mechanism whose output link is the input link to an ordinary slider-crank mechanism. The problem is solved in two stages: (I) an inverted slider-crank mechanism, and (II) an ordinary slider-crank mechanism. • Stage I. For the inverted slider-crank mechanism 5 E 6 O2 ω2 = 40 rad/min α2 = 1500 rad/min2 2 4 3 Design : r1 = O2O4 = 1.85 in, r2 = L2 = 0.8 in, θ1= 278.5° Position: θ2 = 241° Velocity ω2= 40 rad/min= 2/3 rad/s Acceleration : α2 = 1500 rad/min2 = 0.416 rad/s2 O4 θ3 r2 r3 r1 θ2 θ1
Example: (Problem 7-48) – Stage I F • L2 = 0.8 in, L4 = 2.97 in, L5 = 2.61 inθ2 = 241°, O2O4 = 1.85 @ 278.5° • Design: r1 = O2O4 = 1.85 in, r2 = L2 = 0.8 in, θ1= 278.5° • Position: θ2 = 241° 5 E 6 O2 ω2 = 40 rad/min α2 = 1500 rad/min2 2 4 3 O4 θ3 r2 r3 r1 θ2 θ1
Example: (Problem 7-48) – Stage I F • L2 = 0.8 in, L4 = 2.97 in, L5 = 2.61 inθ2 = 241°, O2O4 = 1.85 @ 278.5° • Design: r1 = O2O4 = 1.85 in, r2 = L2 = 0.8 in, θ1= 278.5° • Position: θ2 = 241°, θ3 = 120.34°, r3 = 1.31 in. • Velocityω2= 40 rad/min= 2/3 rad/s 5 E 6 O2 ω2 = 40 rad/min α2 = 1500 rad/min2 2 4 3 O4 θ3 r2 r3 r1 θ2 θ1
Example: (Problem 7-48) – Stage I F • L2 = 0.8 in, L4 = 2.97 in, L5 = 2.61 inθ2 = 241°, O2O4 = 1.85 @ 278.5° • Design: r1 = O2O4 = 1.85 in, r2 = L2 = 0.8 in, θ1= 278.5° • Position: θ2 = 241°, θ3 = 120.34°, r3 = 1.31 in. • Velocityω2= 2/3 rad/s, ω3= -0.21 rad/s, dr3 /dt = -0.46 in/s • Acceleration: α2 = -1500 rad/min2 = -0.4167 rad/s2 5 E 6 O2 ω2 = 40 rad/min α2 = 1500 rad/min2 2 4 3 O4 θ3 r2 r3 r1 θ2 θ1
Example: (Problem 7-48) – Stage II F G • For the ordinary slider-crank mechanism, the following information are now available • Design: r2 = O4E= 2.97 in, r3 = EF= 2.61 in, r4 = O4G 3.25 in θ1= 0°, θ4= 90° • Position: θ2 = θO4E = 120.34°, θ3 = θEF , r1 = GF. • Velocityω2= ω O4E = 0.21 rad/s, ω3= ω EF, dr1 /dt = dGF/dt • Acceleration: α2 = α O4E = -0.25 rad/s2, α 3= α EF, d2r1 /dt2= d2GF/dt2 5 E 6 O2 ω2 = 40 rad/min α2 = 1500 rad/min2 2 r3 4 r4 3 O4 rp r2 r1
Example: (Problem 7-48) – Stage II F G • For the ordinary slider-crank mechanism, the following information are now available • Design: r2 = O4E= 2.97 in, r3 = EF= 2.61 in, r4 = O4G 3.25 in θ1= 0°, θ4= 90° • Position: θ2 = θO4E = 120.34°, θ3 = θEF , r1 = GF. 5 E 6 O2 ω2 = 40 rad/min α2 = 1500 rad/min2 2 r3 4 r4 3 O4 rp r2 r1
Example: (Problem 7-48) – Stage II F G • For the ordinary slider-crank mechanism, the following information are now available • Design: r2 = O4E= 2.97 in, r3 = EF= 2.61 in, r4 = O4G 3.25 in θ1= 0°, θ4= 90° • Position: θ2 = θO4E = 120.34°, θ3 = θEF =13.34°, r1 = GF = 1.41 in • Velocityω2= ω O4E = 0.21 rad/s, ω3= ω EF, dr1 /dt = dGF/dt 5 E 6 O2 ω2 = 40 rad/min α2 = 1500 rad/min2 2 r3 4 r4 3 O4 rp r2 r1
Example: (Problem 7-48) – Stage II F G • For the ordinary slider-crank mechanism, the following information are now available • Design: r2 = O4E= 2.97 in, r3 = EF= 2.61 in, r4 = O4G 3.25 in θ1= 0°, θ4= 90° • Position: θ2 = θO4E = 120.34°, θ3 = θEF =13.34°, r1 = GF = 1.41 in • Velocityω2= ω O4E = 0.21 rad/s, ω3= ω EF = 0.124 rad/s dr1 /dt = dGF/dt = 2 in/s • Acceleration: α2 = α O4E = -0.25 rad/s2, α 3= α EF, d2r1 /dt2= d2GF/dt2 5 E 6 O2 ω2 = 40 rad/min α2 = 1500 rad/min2 2 r3 4 r4 3 O4 rp r2 r1
Example: (Problem 7-48) – Stage II F G • For the ordinary slider-crank mechanism, the following information are now available • Design: r2 = O4E= 2.97 in, r3 = EF= 2.61 in, r4 = O4G 3.25 in θ1= 0°, θ4= 90° • Position: θ2 = θO4E = 120.34°, θ3 = θEF =13.34°, r1 = GF = 1.41 in • Velocityω2= ω O4E = 0.21 rad/s, ω3= ω EF = 0.124 rad/s dr1 /dt = dGF/dt = 2 in/s • Acceleration: α2 = α O4E = -0.25 rad/s2, α 3= α EF, d2r1 /dt2= d2GF/dt2 5 E 6 O2 ω2 = 40 rad/min α2 = 1500 rad/min2 2 r3 4 r4 3 O4 rp r2 r1