180 likes | 280 Views
Torus Oscillations in Accretion Disks and kHz QPOs. William Lee Instituto de Astronomía, Universidad Nacional Autónoma de México. In collaboration with Marek Abramowicz (Chalmers), Wlodek Kluzniak (CAMK), Eduardo Rubio-Herrera (UNAM) . MIT, Oct. 2006. Data - 1. Sco X-1. Twin peaks….
E N D
Torus Oscillations in Accretion Disks and kHz QPOs William Lee Instituto de Astronomía, Universidad Nacional Autónoma de México In collaboration with Marek Abramowicz (Chalmers), WlodekKluzniak(CAMK), Eduardo Rubio-Herrera (UNAM) MIT, Oct. 2006
Data - 1 Sco X-1 Twin peaks… Van der Klis et al 1997
Data - 2 Remillard et al. (2002) XTE J1550-564 Strohmayer (2001) GRO J1655-40 Two kHz QPO peaks in Black Hole systems, showing a 3:2 correspondence. (Abramowicz & Kluzniak 2001).
Data - 3 SAXJ1808 … one or two peaks. Source n(spin) Dn 4U1916-053 270 290-348 4U1702-429 329 333+/-5 4U1728-34 363 342-363 SAXJ1808 401 195+/-6 KS1731-260 524 260+/-10 4U1636-536 581 250-323 4U1608-52 620 225-313 Wijnands et al 2003
Oscillations-What do we model? Accretion disk = finite torus Slender = thin (L,H << r) or thick (L,H~r) No self-gravity (m<<M) Torus = axisymmetric Really a fluid (not a wire): ideal gas eos, P( r ) Strong gravity = pseudo-potential (central pit, ISCO)
How do we model it - 1? Lagrangian hydrodynamics, 2D, cylindrical symmetry (SPH) Initial conditions in hydrostatic equilibrium Initial conditions with constant or power law distributions for specific angular momentum. Potential F = GM[1 - exp(rms/r)]/rms (Kluzniak & Lee 2002), similar to that of Paczynski & Wiita
How do we model it - 2? Meridional section (density) of a slender torus Blaes 1985, Blaes et al. 2006 Sramkova et al. 2006 Lee, Abramowicz & Kluzniak 2004
Characteristic frequencies M=1.4Mo Newtonian GR n=k=z n=z Frequency (Hz) k<n r/rg r/rg
What do we look for? Variability in “local” quantities, e.g., the position of the circle of maximum density or pressure. Variability in “global” quantitites, e.g., the total internal energy of the torus. Impact upon X-ray luminosity? (Bursa et al. 2004, Schnittman 2005)
Applying a perturbation Radial perturbation with a fixed repetition frequency. Lee, Abramowicz & Kluzniak 2004
Non-linear response Coupling between radial and vertical modes, due to pressure. Strong response when np and Dn in 1:1: 3:2 or 2:1 ratio (but see Sramkova et al. 2004). Lee, Abramowicz & Kluzniak 2004
Global variables - 1 Rubio-Herrera & Lee 2005
Global variables - 2 Power in total internal energy A localized perturbation may excite global modes (see Rezzolla et al. 2003). Rubio-Herrera & Lee 2005
Global variables - 3 nr nz nb ~ 3 nz /2 z/rg ||Uint|| Breathing and epicyclic modes for slender tori show a ~3:2 correspondence (Blaes et al. 2006). What happens for thick tori? r/rg Frequency (Hz) Lee 2006, in prep
The end The excitation of internal fluid modes at frequencies other than the epicyclic frequencies is possible in an accretion disk. What is the perturbation? NS spin? Turbulence? How does this impact X-ray emission? (Bursa et al. 2004, Schnittman 2005) Torus vs. full disk? Mode leakage and accretion? (Blaes 1987, Fragile 2005) Modes in thick disks may be more difficult to excite efficiently.
Radially drifting tori - 1 Angular momentum is removed on a timescale Tl >> Torb (e.g., viscosity). The perturbation is applied continuously, from rout to rin. Tests with varying MNS, np. Lee 2005
Radially drifting tori - 2 Power in radial and vertical motions Lee, 2005
Radially drifting tori - 3 Power in vertical motions Range of excited frequencies, from zmin to zmax. Secondary peak with variable power, at about z+np/2. Lee 2005