250 likes | 375 Views
Functional Approximation. Yun Jang Swiss National Supercomputing Centre Data Management, Analysis and Visualization. Overview. Introduction Functional approximation system Generalized basis functions Time series encoding Conclusion. Motivation. Goal:
E N D
Functional Approximation Yun Jang Swiss National Supercomputing Centre Data Management, Analysis and Visualization
Overview • Introduction • Functional approximation system • Generalized basis functions • Time series encoding • Conclusion
Motivation • Goal: • Interactive visualization, exploration, and analysis of datasets on desktop PCs • Challenge: volume rendering and exploration • Large scattered or unstructured volume datasets
Approach • Functional approximation • Unified representation for arbitrary volumetric data • Eliminate dependence on computational grids • Reduce data storage by approximation • Basis functions • Spherical shape basis functions • Radial basis functions (RBFs) • Non-spherical shape basis functions • Ellipsoidal basis functions (EBFs)
Problem Statement • Find a function that provides a good approximation • Input data, • : Spatial locations • : Data values • Weighted sum of M basis functions (Gaussians) • Accuracy vs. number of basis functions
Encoding System Input (x, y) Find Centers Calculate Widths Compute Weights Compute Errors Output (μ, σ, λ) Add Basis Functions Residual Data emax>et Encoding System
Spherical vs. Ellipsoidal Functions • Spherical basis functions (RBFs) • Quick approximation and evaluation • Appropriate for blobby shape volume • Ellipsoidal basis functions (EBFs) • More computation • More texture lookups • Smaller number of basis functions • Appropriate for any volume Spherical basis Functions 59 RBFs Ellipsoidal basis Functions 13 EBFs
General Gaussians • Basic expression using Mahalanobis distance
ry ry r rx rx y x Comparison of Basis Functions • Approximation of grey data • White lines: basis functions • Blue lines: Influence ranges • Red lines: Axis of basis function Spherical Gaussian Axis aligned ellipsoidal Gaussian Arbitrary directional ellipsoidal Gaussian
Cost Functions & Errors • Using L2-norm based error • Data values only • Using H1-norm based error • Data values & gradients • Error criteria • Maximum error: 5% of data value
4 4 4 3 3 2 2 Spatial Data Structure • Speed up the rendering • Use influence of basis function • Example, Max number of basis functions per cell = 4
Results • Rendering performance • Measured on • Intel Bi-Xeon 5150, 2.66GHz • NVDIA 8800 GTS graphics board • Setting • 130 slices for volume rendering • One slice for texture advection visualization • 400x400 viewport
Basis Function Comparison Convection 70th 237 RBFs 10 fps 101 EBFs 16 fps 90 EBFs 9 fps 150th 266 RBFs 16 fps 199 EBFs 21 fps 162 EBFs 13 fps Axis aligned ellipsoidal Gaussian L2-norm Arbitrary directional ellipsoidal Gaussian L2-norm Spherical Gaussian L2-norm
Basis Function Comparison X38 Density 554 EBFs 16 fps 3,343 EBFs 8 fps 3,084 RBFs 7 fps Axis aligned ellipsoidal Gaussian Arbitrary directional ellipsoidal Gaussian Spherical Gaussian
Basis Function & Error Comparison Marschner-Lobb L2-norm 2,092 RBFs 4 fps 208 EBFs 21 fps 112 EBFs 13 fps H1-norm 1,009 RBFs 7 fps 148 EBFs 24 fps 78 EBFs 13 fps Axis aligned ellipsoidal Gaussian Arbitrary directional ellipsoidal Gaussian Spherical Gaussian
Basis Function & Error Comparison Bluntfin L2-norm 891 RBFs 21 fps 264 EBFs 32 fps 282 EBFs 8 fps H1-norm 256 RBFs 31 fps 121 EBFs 32 fps 148 EBFs 13 fps Arbitrary directional ellipsoidal Gaussian Axis aligned ellipsoidal Gaussian Spherical Gaussian
Time Series Data • Using temporal coherence • Coefficient of variation • Error from previous encoding result
Time Series Results 57th 58th Number of basis function Comparison Encoding time Comparison
Time Series Results Number of basis function Comparison Encoding time Comparison
Conclusion • Effective procedural encoding of scalar and multi-field data • Novel approach for interactive reconstruction, visualization, and exploration of arbitrary 3D fields • Encoding based on • Rendering using graphics boards • Both statistical and visual accuracy
Future Work • Investigate various basis functions and cost functions • Reduce computation of nonlinear optimization • Data specific basis function • Feature comparisons between input data and encoded data • Time series encoding with moving grid datasets