1 / 14

STAT 3120 Statistical Methods I

STAT 3120 Statistical Methods I. Lecture 8 Chi-Square. STAT3120 – Chi Square. STAT3120 – Chi Square. When presented with categorical data, one common method of analysis is the “Contingency Table” or “Cross Tab”. This is a great way to display frequencies -

nichelle
Download Presentation

STAT 3120 Statistical Methods I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. STAT 3120Statistical Methods I Lecture 8 Chi-Square

  2. STAT3120 – Chi Square

  3. STAT3120 – Chi Square • When presented with categorical data, one common method of analysis is the “Contingency Table” or “Cross Tab”. This is a great way to display frequencies - • For example, lets say that a firm has the following data: • 120 male and 80 female employees • 40 males and 10 females have been promoted

  4. STAT3120 – Chi Square Using this data, we could create the following 2x2 matrix:

  5. STAT3120 – Chi Square • Now, a few questions… • From the data, what is the probability of being promoted? • Given that you are MALE, what is the probability of being promoted? • Given that you are promoted, what is the probability that you are MALE? • Given that you are FEMALE, what is the probability of being promoted? • Given that you are promoted, what is the probability that you are female?

  6. STAT3120 – Chi Square The answers to these questions help us start to understand if promotion status and gender are related. Specifically, we could test this relationship using a Chi-Square. This is the test used to determine if two variables are related. The relevant hypothesis statements for a Chi-Square test are: H0: Variable 1 and Variable 2 are NOT Related Ha: Variable 1 and Variable 2 ARE Related Develop the appropriate hypothesis statements and testing matrix for the gender/promotion data.

  7. STAT3120 – Chi Square The Chi-Square Test uses the Χ2test statistic, which has a distribution that is skewed to the right (it approaches normality as the number of obs increases). You can see an example of the distribution on pg 641. The Χ2test statistic calculation can be found on page 640. The observed counts are provided in the dataset. The expected counts are the counts which would be expected if there was NO relationship between the two variables.

  8. STAT3120 – Chi Square Going back to our example, the data provided is “observed”: What would the matrix look like if there was no relationship between promotion status and gender? The resulting matrix would be “expected”…

  9. STAT3120 – Chi Square From the data, 25% of all employees were promoted. Therefore, if gender plays no role, then we should see 25% of the males promoted (75% not promoted) and 25% of the females promoted… Notice that the marginal values did not change…only the interior values changed.

  10. STAT3120 – Chi Square Now, calculate the X2 statistic using the observed and the expected matrices: ((40-30)2/30)+((80-90)2/90)+((10-20)2/20)+((70-60)2/60) = 3.33+1.11+5+1.67 = 11.11 This is conceptually equivalent to a t-statistic or a z-score.

  11. STAT3120 – Chi Square To determine if this is in the rejection region, we must determine the df and then use the table on page 732. Df = (r-1)*(c-1)… In the current example, we have two rows and two columns. So the df = 1*1 = 1. At alpha = .05 and 1df, the critical value is 3.84…our value of 11.11 is clearly in the reject region…so what does this mean?

  12. STAT3120 – Chi Square From the book Outliers, Malcolm Glidewell makes the point that the month in which a boy is born will determine his probability of playing in the NHL. The months of birth for players in the NHL are on the next page… (data taken from http://sports.espn.go.com/espn/page2/story?page=merron/081208)

  13. STAT3120 – Chi Square Now, if there is NO relationship between birth month and playing hockey, what SHOULD the distribution of months look like? Lets do this one in EXCEL… Note that this is technically referred to as a “goodness of fit” test – where we are assessing if the actual distribution “fits” what would be expected.

  14. STAT3120 – Chi Square Practice Problems for Chi-Square: 15.55 15.56 15.57 15.58 For all of these, identify the hypothesis statements, the testing matrix, and the decision.

More Related