E N D
FERMAT’S CONJECTURE A PRESENTATION BY ANDY NICHOLS
10 3 6 14 7 5
JAPAN: 1955 TANIYAMA SHIMURA THE TANIYAMA-SHIMURA CONJECTURE: ALL ELLIPTIC CURVES ARE MODULAR
JAPAN: 1955 TANIYAMA SHIMURA THE TANIYAMA-SHIMURA CONJECTURE: ALL ELLIPTIC CURVES ARE MODULAR
GERMANY: 1984 FREY
ENGLAND: 1986 WILES
PROVE PROVE
THE PROOF (PBS)
REFERENCES Burton, D. M. (2011). Elementary Number Theory (7th ed.). New York: McGraw-Hill. Cox, D. A. (1994). Introduction to Fermat’s Last Theorem. Retrieved fromhttp://math.stanford.edu/~lekheng/flt/cox.pdf Katz, V. J. (2009). A History of Mathematics (3rd ed.). Boston: Addison-Wesley. Lynch, J. & Singh, S. (1997). The Proof [Television series episode]. In P. Apsell, NOVA. Boston, MA: Public Broadcasting Service. O’Connor, J.J. & Robertson, E.F. (1996). Pierre de Fermat. Retrieved from http://www-history.mcs.st-and.ac.uk/Biographies/Fermat.html Weisstein, E. W. (2014). Fermat’s Last Theorem. In MathWorld – A Wolfram Web Resource. Retrieved fromhttp://mathworld.wolfram.com/FermatsLastTheorem.html