150 likes | 341 Views
Decimal | Binary | Hexadecimal. Number Systems. Revision Introductory Lesson. In this topic …. Decimal System. Binary System. Hexadecimal System. Conversions. Conversions …. Decimal Binary. Binary Decimal. Binary Hexadecimal. Decimal Hexadecimal. Hexadecimal Binary.
E N D
Decimal | Binary | Hexadecimal Number Systems Revision Introductory Lesson
In this topic … Decimal System Binary System Hexadecimal System Conversions
Conversions … Decimal Binary Binary Decimal Binary Hexadecimal Decimal Hexadecimal Hexadecimal Binary
Decimal System • Ten fingers • Ten different numbers possible: • 0 1 2 3 4 5 6 7 8 9 • Base 10 e.g. 654210
Our Number System 6 5 4 2 6 5 4 2 100 = 1x 2 = 2 101= 10 x 4 = 40 102= 100 x 5 = 500 103= 1000 x 6 = 6000 + 6542 tens units hundreds thousands … 104103102 101100 … 10000 1000 100 10 1
Binary System • Switch • Two possible values:0 and 1 • Base 2E.g. 011101012
Binary System … 27 26 25 242322 2120 … 128 64 32 16 8 4 2 1 0 1 1 1 0 1 0 1 MSB LSB Most Significant Bit Least Significant Bit The bit position having the greatest value The bit position having the least value
Binary to Decimal Conversion Q: Convert 011101012 to decimal. A: 128 64 32 16 8 4 2 1 0 1 1 1 0 1 0 1 Add together the corresponding values where there is a 1 64 + 32 + 16 + 4 + 1 = 11710
Decimal to Binary Conversion Method 1 – Using Long Division • Q: Convert 1810 to binary: A: 2 18 2 9 r 0 1810 = 0100102 2 4 r 1 2 2 r 0 2 1 r 0 0 r 1
Decimal to Binary Conversion • Method 2 – Using Weights Q: Convert 17310 to binary. A: 128 64 32 16 8 4 2 1 1 0 1 0 1 1 0 1 2 Working: 173 – 128 45 – 32 1 – 1 5 – 4 13 – 8 5 0 45 13 1