1 / 14

Warm Up 1. Write the angles in order from smallest to largest.

Learn about triangle relationships, inequalities, and examples using the Hinge Theorem. Explore proofs and angle comparisons in triangles.

nicolasc
Download Presentation

Warm Up 1. Write the angles in order from smallest to largest.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Warm Up 1.Write the angles in order from smallest to largest. 2. The lengths of two sides of a triangle are 12 cm and 9 cm. Find the range of possible lengths for the third side. X, Z, Y 3 cm < s < 21 cm

  2. 5-6 Inequalities in Two Triangles Holt Geometry

  3. Example 1A: Using the Hinge Theorem and Its Converse Compare mBACand mDAC. Compare the side lengths in ∆ABC and ∆ADC. AB = AD AC = AC BC > DC By the Converse of the Hinge Theorem, mBAC > mDAC.

  4. Example 1B: Using the Hinge Theorem and Its Converse Compare EF and FG. Compare the sides and angles in ∆EFH angles in ∆GFH. mGHF = 180° – 82° = 98° EH = GH FH = FH mEHF > mGHF By the Hinge Theorem, EF < GF.

  5. Example 1C: Using the Hinge Theorem and Its Converse Find the range of values for k. Step 1 Compare the side lengths in ∆MLN and ∆PLN. LN = LN LM = LP MN > PN By the Converse of the Hinge Theorem, mMLN > mPLN. 5k – 12 < 38 Substitute the given values. k < 10 Add 12 to both sides and divide by 5.

  6. Example 1C Continued Step 2 Since PLN is in a triangle, mPLN > 0°. 5k – 12 > 0 Substitute the given values. k < 2.4 Add 12 to both sides and divide by 5. Step 3 Combine the two inequalities. The range of values for k is 2.4 < k < 10.

  7. Check It Out! Example 2 When the swing ride is at full speed, the chairs are farthest from the base of the swing tower. What can you conclude about the angles of the swings at full speed versus low speed? Explain. The  of the swing at full speed is greater than the  at low speed because the length of the triangle on the opposite side is the greatest at full swing.

  8. Example 3: Proving Triangle Relationships Write a two-column proof. Given: Prove: AD > CB Proof: 1. Given 2. Reflex. Prop. of  3. Hinge Thm.

  9. Check It Out! Example 3a Write a two-column proof. Given: C is the midpoint of BD. m1 = m2 m3 > m4 Prove: AB > ED

  10. Proof: 1. Given 1.C is the mdpt. of BD m3 > m4, m1 = m2 2. Def. of Midpoint 3.1  2 3. Def. of  s 4. Conv. of Isoc. ∆ Thm. 5.AB > ED 5. Hinge Thm.

  11. Warm Up(Add to HW) 1. Compare mABCand mDEF. 2. Compare PS and QR. mABC> mDEF PS < QR

  12. Lesson Quiz: Part II 3. Find the range of values for z. –3 < z < 7

  13. 1. Given 2. Reflex. Prop. of  3. Conv. of Hinge Thm. 3. mXYW <mZWY Lesson Quiz: Part III 4. Write a two-column proof. Prove: mXYW <mZWY Given: Proof:

More Related