130 likes | 207 Views
Tableau provides a complete range of chart styles. You really don’t even have to understand why a particular chart is better. If you rely on the show me button, tableau will provide an appropriate chart based on the combination of measures and dimensions you’ve selected.
E N D
Learn Abouttheadvanced chart types in tableau - Mindmajix Advanced ChartTypes As our community members show every day, there are endless inventive ways to visualize your data. And while bar graphs and pie charts have their place, sometimes an advanced chart can be the perfect fit to convey the most important insights, on sight. Tableau provides a complete range of chart styles. You really don’t even have to understand why a particular chart is better. If you rely on the show me button, tableau will provide an appropriate chart based on the combination of measures and dimensions you’veselected. There are some useful variations to the default chart types that require a little more knowledge to create. Knowing the type of default settings to modify, makes all the difference. In this section, you’ll review six of the most commonly used non-standard chart types. Bar-in-barchart Bar in bar charts provides a fantastic way to compare a measure against a goal or to display two measures against one another. Building a bar in a bar chart in Tableau is not incredibly difficult, but it does require a few specific steps that can be hard to remember if you haven’t built them alot. The bar-in-bar chart as you see in figure 7.32 whole new way of comparingvalues.
Figure 7.32: Bar-in-barchart In this example, color and size denote actual and budgeted sales. The height of each bar expresses the values of each measure for a particular region. The key to building this chart is to understand how to use color and size while altering tableau’s default bar-stacking behavior. To build this example, using the coffee chain sample data set, follow thesesteps: Multi-select market, budget sales,sales. Using show me, select the side-by-side barchart. Move the measure names, field pill from the column shelf to the size button in the markscard. If you prefer budgeted sales to be present in the wider bar, drag the SUM (budget sales) below the SUM (sales) pill in the measure valuescard. Alternatively, read the measure names color legend to accomplish the same thing. Go to the main menu analysis/stack mark and selectoff. The bar-in-bar chart has more limited uses than a bullet graph that we will cover at the end of the post, but this chart type also packs a dense amount of information into a small space. It is particularly useful when you want to compare a small number of measures across a larger number ofdimensions. Related Page: Learn Heat Maps, Bar Chart and Line Charts inTableau
Box plots Use box plots, also known as a box-and-whisker plots, to show the distribution of values along anaxis. Box plots offer a way to show very granular distribution of a measure across multiple members of a dimensions set. Student test scores, website click-stream data, or per unit pricing are different analyses that might benefit from box plots. The box plot example, in figure 7.33 uses a sampling of website, click stream data for the past year. This data set was obtained using the Google analytics connector provided with tableau software. In this analysis you see how to create a box plot of the “time on page” measure. This data is not a part of the tableau sample data set. If you want to download a copy of the raw data file and solution, see Appendix c: “interworks book website” or the Wiley companion website for the download siteURL. Figure 7.33: Box plot of web pageactivity
Figure 7.34: Define the minimum/maximum referenceband. Each mark denotes average time that was spent on the website for a given sample of visitors. The thick black lines define the maximum and minimum time on site using a band-type reference distribution line. The thin red lines were plotted using a quartile reference distribution. For that type of distribution, the middle red line represents the median value of the time on site for themonth. Generating the granular detail for the box plot requires the source data to be fully disaggregated so that every value is expressed by a mark in the chart. Expose all of the rows in the data set using the analysis menu, then remove the check mark from the aggregate measures option. This will cause every row in the data set to be plotted in theview.
Figure 7.35: Define the quartile referencedistribution. The specific steps used to create the box plot in figure 7.33are: Place the date on the column shelf and select the month and year aggregation. Place the time on page measure on the rowshelf. Dis aggregate the measure using analysis/disaggregatemeasures. The mark size was then reduced using the slider control accessed by clicking on the size button on the markscard. Define the minimum/maximum reference band by right-clicking on the left axis and selecting the add reference line option. This exposes the dialog box you see in figure7.34. Define the quartile reference distribution that provides the box shading along with the median value reference line as well as the upper and lower quartile lines. View that dialog box in figure7.35. Pay careful attention to the scope (cell) and the label settings (none). Test your definition by using the apply button first to visually confirm that the settings are correctly defined. When you’re satisfied with the setting, lock them in by clicking the OKbutton. Related Page: What Is The Wrong Way To Build A Dashboard InTableau?
To complete the quartile reference distribution, note the formatting that uses a gray fill, red line, and the symmetric color shading. Symmetric coloring provides consistent coloring of the quartilebands. • If you are building the box plot from the example data set, your chart should now look like figure 7.33. Box plots combine fully-disaggregated data with the intelligent use of tableau’s reference line capabilities to provide insight into the trend in activity across dimensions. In the example, the time dimension was used to compare web activity over a twelve month period. The extremely high time on the site in May 2013 might warrant additional digging into a more granular extract of the website activity in thatmonth. • Paretocharts • A Pareto chart, named after Vilfredo Pareto, is a type of chart that contains both bars and a line graph, where individual values are represented in descending order by bars, and the cumulative total is represented by the line. • Also known as the 80-20 rule, the Pareto principle was developed in 1906. Pareto Charts in Tableau are very useful to Visually check whether our Data is meeting Pareto rule or not (80 – 20 Percent). Forexample, • Whether 80 percent of our Profits are coming from 20 percent of Customers or not • Whether 80 percent of our Sales are coming from 20 percent of Customers or not • Whether 80 percent of our Profits are coming from 20 percent of products or not • Whether 80 percent of our Sales are coming from 20 percent of products ornot • In general, the (80-20) principal states that 20 percent of the inputs account for 80 percent of the output. For example, 80 percent of profits come from 20% of the products. • Figure 7.36 shows a Pareto chart that displays profit by product. The following example was built using the superstore sales sample data set. You will learn how to create a Pareto chart that plots the cumulative profit generated by each distinct product that superstore sells.
Figure 7.36: Pareto chart-profit by item The vertical axis plots the cumulative profits expressed as a percentage of the total profits generated by the business. The horizontal axis plots the contribution of each individual product (item). Color encoding is being used to display positive and negative profit items as discrete groups. Parameterized reference lines are included, which allow the information consumer to move the lines on both the horizontal and vertical axes. In this way the user can determine how closely the sample conforms to the Pareto principle. In the case of figure 7.36 you can see that the sample data set has 80 percent of product profits being generated from a mere 3 percent of the products. This is a much greater concentration than we would normallyexpect. Related Page: What Is The Right Way To Build A Dashboard InTableau?
Figure 7.37: Vertical axis two-stage tablecalculation The trick to building this type is to understand how table calculations can be used to express the axis values as percentage of the total value. The steps are required to build this chart are givenbelow: Drag the product name dimension to the columnsshelf. Drag the profit measure to the rowshelf. Sort the product name by descending profit (highest profit to lowest profititem). Change the view from normal to entire view using the control on the menu icon bar. Then make the SUM (profit) field on the row shelf into a table by creating a running total tablecalculation. Related Page: Plot Own Locations and Add Custom Geocoding inTableau
Figure 7.38: Horizontal axis two-stage tablecalculation Create a 2-stage table calculation by right-clicking on the field pill created in step 4 and editing quick table calculation as you see in figure7.37. Perform a data extract on the superstore sales connection by right-clicking on the connection in the data shelf, and selecting extractdata/extract. Drag the product name field from the dimensions shelf to the markscard. Edit the product name field just placed in step 7 by right clicking on the field pill and selecting measure/count distinct. Add a 2-stage table calculations to the field editing in step 8 by right clicking on the pill and add tablecalculation. Edit the table calculation you create in step 9 to look like shown in figure 7.38.
Drag the new table calculation created in step 10 to the column shelf and place it to the right of the product name pill. Then drag the product name field pill from the columns shelf to the marks card. Your chart will momentarily look broken. Don’t worry, it isn’tactually. Change the mark typed in view on the marks card from the automatic tool bar. Create a calculated value called (profitable?) to determine if profits are greater than zero using this formula: SUM(profit)>0. Place the (profitable?) calculated value on the color button located on the marks card. Add parameterized reference lines on each axis that allow the information consumer to change the location of the reference line from zero to 100 percent in .01 increments. Refer to figure 7.39 to view the setting used to create the vertical reference line. The horizontal reference requires a second definition and it must be initiated from the horizontalaxis. Edit the color scheme to match the gray/orange colors that indicate profitability. Once the parameterized reference lines are completed, the only remaining work is repositioning the screen elements to your task. The parameter controls in figure 7.36 are positioned below the Pareto chart to better utilize the worksheet by reducing the amount of unused whitespace.
Figure 7.39: parameterized reference lines Don’t be discouraged if it takes a few tries for you to get this chart type comfortably mastered. There are several ways you could build the chart. You may find another way to create the sameeffect. The last two visualizations that you learn about in this chart are closely related to the next post on dashboards. Spark lines and bullet graphs work well in dashboards because together they convey a lot of information even when space isrestricted. Click For more Information: The advanced chart types in tableau