1 / 87

Strong Coupling Q C D

Michael Pennington Jefferson Lab. ECT*, Trento September 2014. Strong Coupling Q C D. d. u. u. Michael Pennington Jefferson Lab. ECT*, Trento September 2014. Strong Coupling Q C D. Fritzsch. Gell-Mann. q ( i D - m ) q. =. q. Leutwyler. QCD. q=u,d,s, c,b,t. 1.

nida
Download Presentation

Strong Coupling Q C D

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Michael Pennington Jefferson Lab ECT*, Trento September 2014 Strong Coupling QCD

  2. d u u Michael Pennington Jefferson Lab ECT*, Trento September 2014 Strong Coupling QCD

  3. Fritzsch Gell-Mann q ( i D - m ) q = q Leutwyler QCD q=u,d,s, c,b,t 1 - F F 4 QCD

  4. QCD confinement asymptotic freedom strong coupling 1 strong QCD pQCD strong QCD 0 -15 0 10 r (m)

  5. Strong physics problems u d strong coupling pQCD u _ u s

  6. Strong physics problems strong coupling pQCD

  7. Strong physics problems strong coupling pQCD

  8. Schwinger-Dyson Equations -1 -1 -

  9. Fermion propagator -1 -1 - wavefunction renormalisation mass function

  10. Fermion propagator -1 -1 - wavefunction renormalisation mass function Gauge variant quantities: only physical quantities are gauge independent

  11. Schwinger-Dyson Equations Bound State Equations QCD M V

  12. Schwinger-Dyson Equations Bound State Equations QCD M V dressed quark propagator

  13. Schwinger-Dyson Equations Bound State Equations QCD qq scattering kernel M V dressed quark propagator

  14. Schwinger-Dyson Equations Bound State Equations P V fp , mp QCD

  15. SDE/BSE – ANL/KSU v pion/vector mesons q 2 MP (GeV2) q q q P + = G 5 - - q q q q V + = G - - q q MV (GeV)

  16. effective interaction strength Maris & Tandy p2 GeV2 10-3 103

  17. effective interaction strength Qin, Chang, Liu, Roberts, Wilson p2 GeV2 10-3 103

  18. electromagnetic formfactors q q q q q qq

  19. Maris-Tandy model q q Can Maris-Tandy (or Qin et al. ) modelling be deduced from the SDE/DSEs? V p s

  20. q q q q q 1 q ( i D - m ) q - F F = q 4 QCD q=u,d,s, c,b,t

  21. Schwinger-Dyson Equations

  22. 2 equations 2 equations 12 equations Schwinger-Dyson Equations QED

  23. q m m -1 -1 = k p k p k p q m Ball & Chiu Gauge Invariance Ward – Green –Takahashi

  24. q m m -1 -1 = k p k p k p q m Ball & Chiu Gauge Invariance Ward – Green –Takahashi

  25. q m m -1 -1 = k p k p k p q m qm 0 1,2,..,8 Gauge Invariance Ward – Green –Takahashi

  26. Fermion propagator -1 -1 - wavefunction renormalisation mass function how to regularize: d4kdnk

  27. Gauge Invariance & Multiplicative Renormalizibility Kizilersu & P Schwinger-Dyson Equations QED k2, q2 >> p2 k2, p2 >> q2

  28. Unquenched Massless renormalised at m2 < L2: a=0.2, z : varying Kizilersu et al

  29. Unquenched Massless renormalised at m2 < L2: a=0.2, z : varying Kizilersu et al

  30. Schwinger-Dyson Equations • remove divergences (eg. quadratic div.) • (ii) ensure correct gauge dependence (eg. transversality of boson) . . . . Consistent truncation Gauge Invariance & Multiplicative Renormalizibility QED

  31. Consistent Solutions of QCD 1 q ( i D - m ) q - F F = q 4 QCD q=u,d,s, c,b,t

  32. Dmn (q)orthogonal toqm andnm - the axial vector Schwinger-Dyson Equations axial gauges Baker, Ball & Zachariasen QCD

  33. Slavnov-Taylor Identity Dmn (q)orthogonal toqm andnm - the axial vector Schwinger-Dyson Equations axial gauges BBZ QCD

  34. _ Richardson Potential b b heavy quark potential spectrum

  35. b

  36. _ _ b b b b positronium e- bottomonium bottomonium g 1 fm 1 fm b b b b e+ V(r) V(r) r r g  0.1 nm

  37. interquark potential gluon propagator rp ~ 1 Coulomb : OBE r << 1, p >> 1 r >> 1, p << 1

  38. interquark potential Richardson Potential rp ~ 1 Coulomb : OBE r << 1, p >> 1 r >> 1, p << 1

  39. Schwinger-Dyson Equations Dmn (q)orthogonal toqm andnm - the axial vector QCD axial gauges G1(q2, n.q), G2(q2, n.q)

  40. Schwinger-Dyson Equations Dmn (q)orthogonal toqm andnm - the axial vector Baker, Ball & Zachariasen G2(q2, n.q) = 0 G1(q2, n.q) ~ 1/q2 QCD ieDmn ~ 1/q4 axial gauges G1(q2, n.q), G2(q2, n.q)

  41. Schwinger-Dyson Equations Dmn (q)orthogonal toqm andnm - the axial vector QCD axial gauges G1(q2, n.q), G2(q2, n.q) Baker, Ball & Zachariasen G2(q2, n.q) = 0 G1(q2, n.q) ~ 1/q2 ieDmn ~ 1/q4 West showed axial gauge Dmn could NOT be more singular than 1/q2

  42. Schwinger-Dyson Equations Dmn (q) QCD covariant gauges x

  43. Schwinger-Dyson Equations qmqn Gl (q) Dmn (q) = Tmn + x q2 q2 Dmn (q) qmqn - Tmn (q) = gmn q2 Gh(q) D (q) = q2 QCD covariant gauges x

  44. Studies in covariant gauges first just gluons Pagels, Mandelstam, Bar-Gadda Gl (q)

  45. Studies in covariant gauges STI Gl Dmn ~ 1/q4possible first just gluons Pagels, Mandelstam, Bar-Gadda Gl (q)

  46. Schwinger-Dyson Equations Slavnov-Taylor Identity qmqn Gl (q) Dmn (q) = Tmn + x q2 q2 Dmn (q) qmqn - Tmn (q) = gmn q2 Gh(q) D (q) = q2 i Dlm P mn=gln covariant gauges x

  47. Schwinger-Dyson Equations Slavnov-Taylor Identity qmqn Gl (q) Dmn (q) = Tmn + x q2 q2 Dmn (q) qmqn - Tmn (q) = gmn q2 Gh(q) D (q) = q2 Landau gauge x = 0 Brown & P (1988)Gh = 1

  48. Studies in the Landau gauge Gl R(q) q2 (GeV2) Gl (q) Brown & P 1988

  49. Studies in the Landau gauge s = 0.25 s = 0.25 Nf = 2 Nf = 2 Gl R(q) Gl R(q) q2 (GeV2) q2 (GeV2) Gl (q) Brown & P 1988

More Related