1 / 6

ONE SAMPLE t-TEST FOR THE MEAN OF THE NORMAL DISTRIBUTION

ONE SAMPLE t-TEST FOR THE MEAN OF THE NORMAL DISTRIBUTION. Let sample from N( μ , σ ) , μ and σ unknown , estimate σ using s. Let significance level = α .

nieve
Download Presentation

ONE SAMPLE t-TEST FOR THE MEAN OF THE NORMAL DISTRIBUTION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ONE SAMPLE t-TEST FOR THE MEAN OF THE NORMAL DISTRIBUTION Let sample from N(μ, σ), μ andσ unknown , estimate σ using s. Let significance level =α. STEP 1. Ho: μ = μoHa: μ ≠ μo or Ha: μ > μo or Ha: μ < μo STEP 2. Compute the test statistic: STEP 3. Compute the critical number/value depends on Ha. Two sided alternative critical value = tα/2(n-1). One sided alternative critical value = tα(n-1). STEP 4. DECISION-critical/rejection regions, use t distribution with df=n-1. Ha: μ ≠ μo Reject Ho if |t|> tα/2(n-1); Ha: μ > μo Reject Ho if t > tα(n-1); Ha: μ < μo Reject Ho if t < - tα(n-1). STEP 5. Answer the question in the problem.

  2. P-value approach STEP 3. Compute the p-value. Two sided test p-value: Ha: μ ≠ μo, P-value: 2P( t(n-1)> |t|) One sided tests p-values: Ha: μ > μo, P-value: P( t(n-1) > t) Ha: μ < μo, P-value: P( t(n-1) < t) value of a value of the t-random variable test statistic STEP 4. DECISION Reject Ho if p-value < significance level α. STEP 5. Answer the question in the problem.

  3. EXAMPLES Example1. A sample of 36 women resulted in mean height of 64” and sample variance = 25. Are women, on average, shorter than 66”? Use 5% significance level. Assume heights follow normal distribution. Solution. n=36, s2=25, μo=66, α = 5%. STEP1. Ho: μ = 66 Ha: μ < 66 STEP 2. Test statistic STEP3. Critical value? Df=n-1=35 and t0.05(35) ≈ 1.69 (Table C). STEP 4. DECISION: t = -2.4 < -t0.05(35) ≈ -1.69 reject Ho. STEP5. On average, women are shorter than 66”.

  4. EXAMPLE 1 contd. P-value approach STEP 3. P-value = STEP 4. DECISION: P-value=0.01 < sign. level = 0.05 reject Ho. STEP5. On average, women are shorter than 66”.

  5. EXAMPLES, contd. Example 2. Suppose a sample of size 16 results in mean of 10 and standard deviation of 3.2. Test Ho: μ = 8 vs. Ha: μ > 8 using α=0.05. Solution. n=16, s=3.2, μo=8, α = 5%. STEP1. Ho: μ = 8 Ha: μ > 8 STEP 2. Test statistic STEP3. Critical value? Df=n-1=15 and t0.05(15) ≈ 1.753 (Table C). STEP 4. DECISION: t = 2.5 > t0.05(15)=1.753, so we reject Ho. STEP5. Reject Ho.

  6. EXAMPLES, contd. Example 3. Suppose a sample of size 16 results in mean of 10 and standard deviation of 3.2. Test Ho: μ = 8 vs. Ha: μ ≠ 8 using α=0.05. Solution. n=16, s=3.2, μo=8, α = 5%. STEP1. Ho: μ = 8 Ha: μ ≠ 8 STEP 2. Test statistic = 2.5. STEP3. Critical value? Df=n-1=15, α/2=0.025, and t0.025(15) =2.131. STEP 4. DECISION: t = 2.5 > t0.025(15)=2.131, so we reject Ho. STEP5. Reject Ho.

More Related