170 likes | 252 Views
CRAZY FORE GEOMETRY . Mackenzie Beneteau 7 th Hour January 4, 2012. Table of Contents. Parallel Lines……………………………………….Page 1 Two Congruent Objects……………………….Page 2 Vertical Angles…………………………………….Page 3 Perpendicular Lines……………………………..Page 4 Intersecting Lines…………………………………Page 5
E N D
CRAZY FOREGEOMETRY Mackenzie Beneteau 7th Hour January 4, 2012
Table of Contents Parallel Lines……………………………………….Page 1 Two Congruent Objects……………………….Page 2 Vertical Angles…………………………………….Page 3 Perpendicular Lines……………………………..Page 4 Intersecting Lines…………………………………Page 5 Supplementary Angles…………………………Page 6 Corresponding Angles………………………....Page 7 Adjacent………………………………………………Page 8 Obtuse Angle……………………………………….Page 9 Regular Polygon…………………………………..Page 10 Vertex Angle………………………………………..Page 11 Isosceles Triangle…………………………………Page 12 Right Triangle………………………………………Page 13 Hypotenuse…………………………………………Page 14 Pythagoras………………………………………….Page 15
Parallel Lines If the lines were not parallel, the golfer would have an incorrect posture and not be able to approach the ball correct Def: two or more coplanar lines that have no points in common or are identical
If the 2 triangles were not congruent then the golfers swing would be wrong and the ball would not go the correct way 2 Congruent Objects Def: two figures where one is the image of the other under a reflection or composite of reflections
The person that made the vertical angles the way they did is to show how the golf clubs cross Vertical Angles Def: 2 angles that share a common vertex and whose sides form 2 lines
The alignment sticks are to tell the golfer where to place their feet & where to place the ball for a correct posture. The consequences if the two sticks were not crossed the way that they are, the golfer would have an incorrect foot posture Perpendicular Lines Def: 2 angles that share a common vertex and whose sides form 2 lines
There’s not really an importance on why the lines are intersecting, the lines just show that the black squares of the flag make intersecting lines. Intersecting Lines Def: Lines that have one and only one point in common are known as intersecting lines.
Supplementary Angles Def: 2 angles whose measures, when added together, equal 180 degrees If the angle was not supplementary, the golfer would not be in a full backswing.
Def: any pair of angles in similar locations with respect to a transversal Corresponding Angles If the angles were not corresponding, then the golf cart would not be proportional
Adjacent Def: 2 nonstraight and nonzero angles that have a common side in the interior of the angle formed by the noncommon sides
Obtuse Angles Def: an angle whose measure is greater than 90 but less than 180 degrees
Regular Polygon Def: a convex polygon whose angles and sides are all congruent
Vertex Angle the angle formed by the equilateralsides of an isosceles triangle
Isosceles Triangle A triangle with two sides of equal length
Right Triangle A triangle that has a 90 degree angle
Hypotenuse the side opposite the right angle in a right triangle
Pythagoras B 5 • A(2) + B (2) = C (2) 12 A C