130 likes | 249 Views
Anti-dielectric Breakdown Model as a Model for Erosion Phenomena Yup Kim, Sooyeon Yoon KyungHee University. Disorder System Research Group. Abstract Laplacian field 에 의해 결정되는 확률에 의존하여 침식되는 물질 표면 구조의 동역학적 축척 보편성에 관하여 연구하였다 . 물질의
E N D
Anti-dielectric Breakdown Model as a Model for Erosion Phenomena Yup Kim, Sooyeon Yoon KyungHee University
Disorder System Research Group Abstract Laplacian field에 의해 결정되는 확률에 의존하여 침식되는 물질 표면 구조의 동역학적 축척 보편성에 관하여 연구하였다. 물질의 표면을 y=h(x, t)로 나타내면 Laplacian field (x, y, t) 는 y > h(x, t) 에서 2(x, y, t) = 0 를 만족하고, y < h(x, t) 에서 (x, y, t) = 0 이다. 여기서 표면에 있는 입자가 제거될 확률은 로 주어진다. 여기서는 model의 표면의 동역학적 축척 보편성이 에 따라 어떻 게 달라지는가를 보였다. = 1일 때에는 diffusion limited annihilation에서와 같이 동역학적 지수가 z = 1임을 알 수 있다. 1 이면 표면에 거칠기가 나타나지 않고, 0 에서는 KPZ 방 정식을 만족하는 anti-Eden model로 crossover가 일어남을 보였다. KyungHee Univ.
Disorder System Research Group KyungHee Univ. Introduction Dielectric Breakdown Model (Niemeyer & Potronero, 1986) Related Phenomena Electrolytic polishing Mullins-Sekerka instability Saffman-Taylor’s experiment result (1958) Scaling Relations Surface Width
Disorder System Research Group Open bond Eden Model KyungHee Univ. Eden Model (Jullien & Botet, 1985) Kardar-Parisi-Zhang(KPZ) Universality Class Anti-Eden Model Annihilation Probability h -h Anti-Eden Model
Disorder System Research Group KyungHee Univ. Linear Langevin equation for surface growth (x, t) is stochastic noise with zero mean Diffusion Limited Erosion Model (Krug & Meakin, 1991) by Fourier Transformation of surface height h(x)
Disorder System Research Group KyungHee Univ. Model Anti-dielectric Breakdown Model Boundary Condition Substrate의 boundary condition을 (x, yb, t) = 1 이라 하고, 이 substrate로부터 멀리 떨어진 지점에서의 boundary condition 을 (x, yb, t) = 0 으로 정한다. Laplace Equation 2 = 0 위의 boundary condition에 따라 이 공간 내의 Laplace equation을 relaxation method를 이용하여 푼다. Relaxation method ( : over-relaxation parameter )
Disorder System Research Group (x, yb, t) = 1 2 =0 yb (x,h) (x, yb, t) = 0 KyungHee Univ. Probability Laplace equation에 의해 결정된 potential value로 substrate의 각 site 마다 erosion이 일어날 확률을 다음과 같이 구한다. Erosion Random number를 발생시켜 erosion probability와 비교하여 선택된 site를 제거한다.
Disorder System Research Group KyungHee Univ. Result = 0 (Anti-Eden Model) = 0.49, = 0.33, z = 1.49 (KPZ exponents)
Disorder System Research Group KyungHee Univ. = 0.01 = 0.48, = 0.33, z = 1.45 (KPZ)
Disorder System Research Group KyungHee Univ. = 0.1 = 0. 30, = 0.18, z = 1.67 Crossover regime(EW or KPZ?)
Disorder System Research Group KyungHee Univ. = 1 비교 Diffusion Limited Annihilation (Pb= 0.25)
Disorder System Research Group KyungHee Univ. = 0.5 DLD = 2 z = 1 로 collapse 됨. (DLD)
Disorder System Research Group KyungHee Univ. Summary & Discussion 0 = 0.49, = 0.33, z = 1.49 Anti-DBM 은 0 에서 KPZ equation을 만족하는 anti-Eden model로 crossover가 일어난다. 가 아주 작아지지 않으면 KPZ behavior가 나타나지 않는다. ( 0.01) 0.3 < 1 crossover regime EW or KPZ universality class로 예상. 0.5 2 Diffusion Limited Erosion과 같은 linear growth equatuion을 만족한다. Dynamic exponent, z=1 > 2 (?) 이면 smooth phase를 갖는다. 즉, roughening이 일어나지 않는다.