1 / 28

Big Bang

Big Bang. Extraterrestrial Life and Death Lecture Seven, Jan. 29, 2003. Pre-project Essay. In one or two typewritten pages discuss some of the events important for life on Earth between the Big Bang and the evolution of man. Due Friday Jan. 31, 2002. Evolution.

nishi
Download Presentation

Big Bang

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Big Bang Extraterrestrial Life and Death Lecture Seven, Jan. 29, 2003

  2. Pre-project Essay • In one or two typewritten pages discuss some of the events important for life on Earth between the Big Bang and the evolution of man. • Due Friday Jan. 31, 2002.

  3. Evolution • Evolution and survival of fittest is very powerful. • Evolution needs stable environment for long time and way to store information (DNA). • Is evolution enough to explain Man and intelligence from primitive life? • A number of mass extinctions have occurred on Earth. Some probably from asteroid/ comet impacts. • Mass extinctions can be important for evolution.

  4. Genesis • This completes overview of first third of class. • Origin of Universe in Big Bang. • Origin of first stars and Milky Way galaxy. • Origin of chemical elements in stars that died before the solar system formed. • Origin of solar system: Earth, Sun and planets. • Origin of primitive life. • Evolution of intelligence and Man. • Man very recent, sophisticated multicell organsims 6-700 Mya, life 3.8 Bya, formation of Earth 4.6 Bya, formation of elements 5-12Bya, Milky Way galaxy 12 Bya, Big Bang ~13 Bya. • Here is a reverse timeline of some of these events in terms of the evolution of the Earth.

  5. Big Bang • Grand explosion that created the Universe. • Who banged? God. • What banged? The Universe. • When was the big bang? ~13 B.y. ago. • Where was the big bang? Everywhere. It created space. • Why the big bang? For life???

  6. Who banged? God • As a physicist part of my definition of God is that which created the Universe. • Hey, it is in his job description. • What banged. Tremendous explosion that created the mass, energy, space, and time of the Universe. • When? We measure an expansion ratefor the Universe today. The faster the rate, the faster the galaxies got to their present positions hence the younger the Universe is.

  7. Where was the Bang? • Everywhere. • The explosion created the space and time of the Universe. It also created the reference frame to ask where any event occurred. • The Universe has no center and no edge! Just like the surface of the round Earth has no center or edge.

  8. What is outside the Universe? • What is the Universe expanding into? • What happened before the big bang? • What is the sound of one hand clapping, Grasshopper? • There was no time or space before the big bang. • You will not be responsible, in this class, for anything which occurred before the big bang.

  9. We now know that distant galaxies are moving away from us as the Universe expands.

  10. Expanding Universe Click here for 10 second animation of expanding universe • Dots represent galaxies. Each dot moves away from all others as the Universe expands. Note, Universe shown as expanding surface, should show it as expanding 3 dim space in 4 dimensions. • Scientific visualization from "Galactic Odyssey“ produced by NCSA for NHK, the Japanese Broadcasting Co.

  11. Dots are Galaxies –Island Universes Single dot is M31 Galaxy Hubble deep field showing lots of galaxies

  12. Image of M31 from my driveway with an 8” telescope and a homemade CCD camera.

  13. Great Scale of the Universe • E. Hubble in 1920s used great 100” Hooker telescope to resolve M31 into stars. He enlarged the image until the uniform white “milky way” gave may to individual stars. • M31 is made out of lots of stars just like our own Milky Way! We are but one of very many galaxies! • Stars were very dim. This implied M31 is very far away. Of order 3 million light years! [Note, today we think of this distance as a very close neigbor.] • Read discussion and debate in the Perfect Machine.

  14. Expansion of Universe and the Motion of Distant Galaxies • How do we know that distant galaxies are moving away from us? • These galaxies are so far away that it would take a very long time, even given their very high velocities, to see them move appreciably. • Instead, we infer their velocities from the Doppler shifts of their spectral lines.

  15. Spectral Lines • How do we know the composition of distant Stars and Galaxies? • Each chemical element has a set of unique spectral lines. These are particular frequencies of light (electromagnetic radiation) that the element absorbs or emits. • Chemical elements are characterized by their atomic number Z. This is the number of electrons that orbit the nucleus. Hydrogen Z=1, Helium Z=2, Lithium Z=3 … Uranium Z=92. • Quantum mechanics says these electrons can only have discrete energies when they are orbiting the nucleus. A spectral line is emitted when an electron jumps from one energy to another.

  16. Hydrogen has Z=1, Carbon has Z=6 and Sodium (Na) has Z=11 electrons.

  17. Example, Sodium Glows Yellow • Spectrum of Sodium shows green, bright yellow, orange. and red spectral lines. Light from a glowing discharge containing the element sodium is split by a prism with short wavelengths (blue) on the left and long (red) wavelengths on the right. • Seeing these lines in the spectrum of a star or galaxy implies that the distant object contains sodium. • Remember electromagnetic spectrum.

  18. Composition of Other Stars • Spectral lines show that other stars, in general, have a similar chemical composition to our Sun. • Therefore, the Sun is just another star! • The Earth was no longer the center of the universe since it orbits the Sun. • Now the Sun is not the center of the universe because it is just one of billions of stars in the galaxy.

  19. Spectra of some stars. Spectra are shown in order of decreasing temperature for normal stars, whose names are listed on the right. Spectral types are labeled on the left, and the wavelengths and associated elements are shown at the top and bottom for selected spectral lines.

  20. Doppler shift of Spectral Lines • If an object is moving away from you, the sound or light that it emits is Doppler shifted to lower frequencies. • The lowest frequency visible light is red. Therefore we call this a red shift. • If the object is moving towards us, the light is shifted to higher frequencies and we call it a blue shift. • Can use the Doppler shift to measure the velocity of distant galaxies.

  21. Doppler Shift of Light from Galaxy • The top figure compares spectral line (black line) from distant galaxy to same spectral line on Earth, yellow marks at top and bottom. • If galaxy is moving away (middle figure) spectral line is shifted to the red. If galaxy is moving towards us (bottom), spectral line is shifted towards blue.

  22. Hubble’s Law • E. Hubble found that light from distant galaxies was red shifted by an amount proportional to distance (from us). • The velocity of a distant galaxy v (inferred from the red shift) is related to its distance d, v=H d • Hubble’s constant H has dimensions of 1/time. • Age of universe is about 1/H. Exact value depends on how expansion rate depends on time. • This expansion age is about 13 B. years.

  23. Expanding Universe Click here for 10 second animation of expanding universe • Dots represent galaxies. Each dot moves away from all others as the Universe expands. Note, Universe shown as expanding surface, should show it as expanding 3 dim space in 4 dimensions. • Scientific visualization from "Galactic Odyssey“ produced by NCSA for NHK, the Japanese Broadcasting Co.

  24. Age of Universe • Age of oldest stars. Stars turn into red giants (such as Betelgeuse) when they burn their hydrogen fuel. More massive stars are hotter and burn their fuel much faster. • Our Sun will take a total of 10 billion years to use up its hydrogen. Note, Sun has been shinning for 4.6 B. years so it has about 5 B. more years to go before becoming a red giant. • More massive stars, last much less then 10 B. years. Less massive stars last longer.

  25. Globular Star Clusters • Contain up to a million stars which all formed at nearly the same time. Look for smallest mass star that has already become a red giant. Many clusters in our galaxy have red giants with masses slightly less then the Sun. • Thus the clusters are about 12-13 B. years old. Universe is about 1 B. years older Ancient Globular Star Cluster M13

  26. Radioactive dating of Stars • New! With a great deal of effort one can determine amounts of radioactive Thorium and Uranium in ancient stars in halo of Milky Way galaxy. This is done by observing spectral lines (particular frequencies of light) from U and Th in the star light. • This gives a direct radioactive age of these stars of 12 +/- 3 B. years. • Three independent ways to date Universe: expansion rate, globular cluster red giants, and radioactive dating. All say Universe is about 13 B. years old.

  27. Big Bang Summary • Universe contains countless galaxies like Milky Way. • A single galaxy can have 100s of billions of stars. • Spectrum (characteristic frequencies) of star light similar to Sun. Sun is just nearest star. • Each chemical element has characteristic spectral lines. • Doppler shift of spectral lines from distant galaxies shows universe is expanding. • Measured expansion rate implies about 13 billion years ago all galaxies on top of each other: age of universe. • This was Big Bang that created a very hot and dense universe that has been expanding and cooling ever since.

  28. For next time • Read chap. 3 of Jakosky about the history of the Earth and read “Alchemy of the Heavens", pages 25-58 in course packet about origin of chemical elements. • Pre-project Essay: In one or two typewritten pages discuss some of the events important for life on earth between the Big Bang and the evolution of man. Due Friday Jan. 31, 2002. • Next lecture, “Death Stars and Alchemy of the Heavens” about the origin of the chemical elements.

More Related