1 / 11

Muller’s Derivation

Muller’s Derivation. Muller’s Method. quadratic. y = f(x). x. x 1. x 2. x 3. Muller’s Method. Start with three points (x 1 ,y 1 ), (x 2 ,y 2 ), (x 3 ,y 3 ) and the quadratic in the form of y = d 1 (x-x 2 )(x-x 3 ) + c 2 (x-x 3 ) + y 3 y 1 – y 2 Define c 1 = -------

niyati
Download Presentation

Muller’s Derivation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Muller’s Derivation

  2. Muller’s Method quadratic y = f(x) x x1 x2 x3

  3. Muller’s Method Start with three points (x1,y1), (x2,y2), (x3,y3) and the quadratic in the form of y = d1(x-x2)(x-x3) + c2(x-x3) + y3 y1 – y2 Define c1 = ------- x1 – x2 Substitute (x2,y2) into the above quadratic ( ), we get y2 = d1(x2-x2)( x2-x3) + c2(x2-x3) + y3 y2 - y3 ------- = c2 x2 - x3

  4. Continue Substitute (x1,y1) into the above quadratic ( ), we get y1 = d1(x1-x2)( x1-x3) + c2(x1-x3) + y3 y1 - y3 ------- = d1(x1-x2) + c2 x1 - x3 y1 – y2 + y2 - y3 ---------------- - c2 = d1(x1-x2) x1 - x3 y1 – y2 + y2 - y3 c2 ---------------- - ------- = d1 (x1 - x3)(x1-x2) (x1-x2)

  5. Continue y1 – y2 y2 - y3 (x1-x3)c2 ------------- + ---------- - -------------- = d1 (x1-x3)(x1-x2) (x1-x3)(x1-x2) (x1-x2)(x1-x3) (y2 - y3)( x2 - x3) ------------------ c1 x2 - x3 (x1-x3)c2 --------- + --------------------- - ------------- = d1 (x1-x3) (x1-x3)(x1-x2) (x1-x2)(x1-x3)

  6. Continue c1 c2 (x2-x3)(x1-x3)c2 -------- + -------------- - ---------- = d1 (x1-x3) (x1-x3)(x1-x2) (x1-x2)(x1-x3) c1 c2 (x2-x1) -------- + ------------ = d1 (x1-x3) (x1-x3)(x1-x2) c1 -c2 ----------- = d1 (x1-x3)

  7. Continue Consider the quadratic ( )again y = d1(x-x2)(x-x3) + c2(x-x3) + y3 y = d1(x-x3+x3-x2)(x-x3) + c2(x-x3) + y3 y = d1(x-x3)(x-x3)+ d1(x3-x2)(x-x3)+ c2(x-x3) + y3   y = d1(x-x3)2 + d1(x3-x2)(x-x3) + c2(x-x3) + y3 Let s = d1(x3-x2) + c2 then y = d1(x-x3)2 + s(x-x3) + y3 Solve for a root: 0 = d1(x-x3)2 + s(x-x3) + y3

  8. Continue To find the root closest to x3, find x so that z = 1/(x - x3) is as large as possible. So solve for z in 0 = d1 + sz + y3z2 __________ z = -s  s2 – 4y3d1 ------------------- 2 y3 _________ z = -s - sign(s) s2 – 4y3d1 ---------------------------- 2 y3 So, 2 y3 x = x3 - ---------------------- ___________ s + sign(s) s2 – 4y3d1

  9. Muller’s Method

  10. Try Some Examples • Solve x3 – x + 2 = 0 >> roots([1 0 -1 2]) ans = -1.52137970680457 0.76068985340228 + 0.85787362659518i 0.76068985340228 - 0.85787362659518i >> mullerquick(inline('x^3-x+2'),0,-.5, -1) x(1) = -1.75830573921179 - 0.00000000000000i x(2) = -1.49926302975117 - 0.00000000000000i x(3) = -1.52092880889720 - 0.00000000000000i x(4) = -1.52137930965153 - 0.00000000000000i x(5) = -1.52137970680523 - 0.00000000000000i x(6) = -1.52137970680457 - 0.00000000000000i x(7) = -1.52137970680457 - 0.00000000000000i

  11. Continue >> mullerquick(inline('x^3-x+2'),.5+1i,.6+.9i,.7+.8i) x(1) = 0.71856199101924 + 0.89859921025906i x(2) = 0.78795773752017 + 0.88306417324757i x(3) = 0.77762178199432 + 0.83914587049108i x(4) = 0.74755387793361 + 0.84538974913787i x(5) = 0.75194614048869 + 0.86698574649461i x(6) = 0.76696166211287 + 0.86374867314893i x(7) = 0.76473312809717 + 0.85353675807555i x(8) = 0.75767823986813 + 0.85503342406855i x(9) = 0.75871781522482 + 0.85995999239523i x(10) = 0.76213246715513 + 0.85922968010984i … x(87) = 0.76068985340228 + 0.85787362659518i x(88) = 0.76068985340228 + 0.85787362659518i x(89) = 0.76068985340228 + 0.85787362659518i x(90) = 0.76068985340228 + 0.85787362659518i x(91) = 0.76068985340228 + 0.85787362659518i x(92) = 0.76068985340228 + 0.85787362659518i x(93) = 0.76068985340228 + 0.85787362659518i

More Related