1 / 28

Extending Tiny

Extending Tiny. Programming Language Principles Lecture 27. Prepared by Manuel E. Bermúdez, Ph.D. Associate Professor University of Florida. Tiny’s Denotational Semantics in RPAL. let EQ x y = Istruthvalue x & Istruthvalue y -> (x & y) or (not x & not y)

nladd
Download Presentation

Extending Tiny

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Extending Tiny Programming Language Principles Lecture 27 Prepared by Manuel E. Bermúdez, Ph.D. Associate Professor University of Florida

  2. Tiny’s Denotational Semantics in RPAL let EQ x y = Istruthvalue x & Istruthvalue y -> (x & y) or (not x & not y) | Isstring x & Isstring y or Isinteger x & Isinteger y -> x eq y | false in let COMP f g x = let R = f x in R @EQ 'error' -> 'error' | g R in

  3. Tiny’s Denotational Semantics in RPAL let PIPE x f = x @EQ 'error' -> 'error' | (f x) in let Return v s = (v,s) in let Check Dom (v,s) = Dom eq 'Num' -> Isinteger v -> (v,s) | 'error' | Dom eq 'Bool' -> Istruthvalue v -> (v,s) | 'error' | 'error' in

  4. Tiny’s Denotational Semantics in RPAL let Dummy s = s in let Cond F1 F2 (v,s) = s @PIPE (v -> F1 | F2) in let Replace m i v x = x @EQ i -> v | m x in let Head i = i 1 in let Tail T = rtail T (Order T) where rec rtail T N = N eq 1 -> nil | (rtail T (N-1) aug (T N)) in

  5. Tiny’s Denotational Semantics in RPAL let rec EE E (m,i,o) = Isinteger E -> Return E (m,i,o) | Isstring E -> ( E eq 'true' -> Return true (m,i,o) | E eq 'false' -> Return false (m,i,o) | E eq 'read' -> Null i -> 'error' | (Head i,(m,Tail i,o)) | (let R = m E in R @EQ 'undef' -> 'error' | (R,(m,i,o)) ) )

  6. Tiny’s Denotational Semantics in RPAL | Istuple E -> ( (E 1) @EQ 'not' -> (m,i,o) @PIPE EE(E 2) @PIPE (Check 'Bool') @PIPE (fn(v,s).(not v,s))

  7. Tiny’s Denotational Semantics in RPAL | (E 1) @EQ '<=' -> (m,i,o) @PIPE EE(E 2) @PIPE (Check 'Num') @PIPE (fn(v1,s1). s1 @PIPE EE(E 3) @PIPE (Check 'Num') @PIPE (fn(v2,s2).(v1 le v2,s2)) )

  8. Tiny’s Denotational Semantics in RPAL | (E 1) @EQ '+' -> (m,i,o) @PIPE EE(E 2) @PIPE (Check 'Num') @PIPE (fn(v1,s1). S1 @PIPE EE(E 3) @PIPE (Check 'Num') @PIPE (fn(v2,s2).(v1 + v2,s2)) ) | 'error' // not 'not', '<=', '+' ) | 'error' // not a tuple in

  9. Tiny’s Denotational Semantics in RPAL let rec CC C s = not (Istuple C) -> 'error' |(C 1) @EQ ':=' -> s @PIPE EE (C 3) @PIPE (fn(v,s). (Replace (s 1) (C 2) v,s 2,s 3)) |(C 1) @EQ 'print' -> s @PIPE EE (C 2) @PIPE (fn(v,s). (s 1,s 2,s 3 aug v))

  10. Tiny’s Denotational Semantics in RPAL | (C 1) @EQ 'if' -> s @PIPE EE (C 2) @PIPE (Check 'Bool') @PIPE (Cond (CC(C 3)) (CC(C 4))) | (C 1) @EQ 'while' -> s @PIPE EE (C 2) @PIPE (Check 'Bool') @PIPE Cond (CC(';',C 3,C)) Dummy

  11. Tiny’s Denotational Semantics in RPAL |(C 1) @EQ ';' -> s @PIPE CC (C 2) @PIPE CC (C 3) | 'error' // not ':=', 'if', ... in let PP P = not (Istuple P) -> (fn i. 'error') | not ((P 1) @EQ 'program') -> (fn i. 'error') | ((fn i. CC (P 2) ((fn i.'undef'),i,nil) //start state! ) @COMP (fn s.(s 3)) ) in

  12. Tiny’s Denotational Semantics in RPAL Print ( PP ('program', // test program (';', (':=', 'x',3), ('print', 'x') ) ) (nil aug 3) // the input ) Whew ! Now, RUN IT !!

  13. Tiny’s Denotational Semantics in RPAL • Executable semantic specification of Tiny. • Add a parser, and voilà ... Tiny is implemented ! • Could even write the parser in RPAL ...  • Inefficient, but who cares ... • 'error' (and others) should probably be '<error>', so we allow those as variable names in Tiny. • Subject to change: • Alter order of evaluation of operands. • Allow comparison of booleans.

  14. Extending Tiny • First, add more comparison operators, and lots of arithmetic operators (easy). Example: EE[<- E1 E2>] = EE[E1] o (Check Num) o (λ(v1,s1). s1 => EE[E2] => (Check Num) => (λ(v2,s2).(v1 - v2,s2) )

  15. Extending Tiny • Let’s add the '=' comparison operator. Allow for Num and Bool. This allows type mixing ! EE[<= E1 E2>] = EE[E1] o (Check Num) o (λ(v1,s1). s1 => EE[E2] => (Check Num) => (λ(v2,s2).(v1 eq v2,s2) )

  16. Add Conditional Expression Need a new auxiliary function: Econd. ECond: (State → Val xState) → (State → Val xState) → (Val x State) → (Val x State) Econd = λEF1. λEF2. λ(v,s). s => (v → EF1 | EF2) EE[<cond E1 E2 E3>] = EE[E1] o (Check Bool) o (Econd EE[E2] EE[E3])

  17. Add prefix auto-increment operator EE[<++ I>] = | EE[I] o (Check Num) (λ(v,(m,i,o)). v eq → error | (v+1, (Replace m I (v+1)), i, o) ) For postfix (n++), change this to v !

  18. Adding the one-armed ‘if’ to Tiny CC[<if E C>] = EE[E] o (Check Bool) o (Cond CC[C] Dummy) Of course, for most of these, the syntactic domains need to be updated.

  19. Adding a ‘repeat’ statement to Tiny CC[<repeat C E>] = CC[C] o EE[E] o (Check Bool) o (Cond Dummy (CC[<repeat C E>])) or better yet, CC[<repeat C E>] = CC[C] o CC[<while <not E> C>]

  20. Adding a read statement to Tiny CC[<read I>] = | λ(m,i,o). Null i → error | (Replace m I (Head i), Tail i, o) Would need to remove the ‘read’ expression.

  21. Adding the Pascal ‘for’ loop to Tiny CC[<for I F L C>] = EE[L] o (Check Num) o (λ(l,s). S => EE[F] => (Check Num) => (λ(f,(m,i,o)). (Replace m I f, i, o) => CC[<while < ≤ I l> <; C <:= I <+ I 1>>> ] ) ) o (λ(m,i,o). (Replace m I ,i, o)) Yuck. Can’t enforce lots of rules.

  22. Adding the C ‘for’ loop to Tiny CC[<for F E I C>] = CC[F] o CC[<while E <; C I>>] or CC[<; F <while E <; C I>>] Remarkably simple, eh ? Of course, Tiny has no continue statement to get in the way. We assume default values have been added for any missing parts, e.g. true for E.

  23. Adding a ‘case’ statement to Tiny CC[<case E CC1 ... CCn >] = EE[E] o (Check Num) o C_CC[CC1] ... C_CC[CCn] o (λ(v,s).s) Need a new syntactic domain, for case-clauses: C_C = <c_c n C> Also, a new semantic function to process them: C_CC: C_C → (Val x State) → (Val x State)

  24. Adding a ‘case’ statement to Tiny To process one case clause: C_CC[<c_c n C>] = λ(v,s). v eq  → (v,s) | v ne n → (v,s) | ( , s => CC[C]) Aborts all subsequent case clauses. To process them all, change this to v !

  25. Remarks on Denotational Semantics • Exercise: implement these in RPAL ! (see ‘medium’ on website) • Can this be done for “real” programming languages ? Yes, but ... • We now have three formalisms for specifying the semantics of programming languages: • Operational (RPAL) • Attribute grammars (Tiny) • Denotational (Tiny)

  26. Remarks on Semantic Specifications • Remember, parsing was *easy*  • Reason: one formalism (CFG’s) good for everyone: • Language user. • Language implementer. • Language designer. • Not so in the world of semantics.

  27. Remarks on Semantic Specifications User Designer Implementer Operational Denotational Attribute Grammar E – Excellent, G – Good F – Fair, T - Terrible

  28. Extending Tiny Programming Language Principles Lecture 27 Prepared by Manuel E. Bermúdez, Ph.D. Associate Professor University of Florida

More Related