440 likes | 547 Views
5.1 midsegments of triangles. Geometry Mrs. Spitz Fall 2004. Objectives:. Use properties of midsegments to solve problems Use properties of perpendicular bisectors Use properties of angle bisectors to identify equal distances such as the lengths of beams in a room truss.
E N D
5.1 midsegments of triangles Geometry Mrs. Spitz Fall 2004
Objectives: • Use properties of midsegments to solve problems • Use properties of perpendicular bisectors • Use properties of angle bisectors to identify equal distances such as the lengths of beams in a room truss.
Midsegments of triangles • Turn in your book to page 243. In the blue box is an investigation. • Complete the investigation, we’ll share our conjectures in 3 minutes.
Midsegment • A segment that connects the midpoints of two sides • Midsegment theorem: if a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side AND is half it’s length.
Example 1 • In triangle XYZ, M, N, and P are midpoints. The perimeter of triangle MNP is 60. Find NP and YZ. X 22 P M 24 Y N Z
Example 2 • In triangle DEF, A, B, and C are midpoints. Name pairs of parallel segments.
X U = = Y | | Z • Check for understanding. • AB= 10 and CD = 18. Find EB, BC, and AC. • Critical Thinking • Find m<VUZ. Justify your answer A = | E B | = D C V
Real world connection • CD is a new bridge being built over a lake as shown. Find the length of the bridge.
Assignment: • Page 246 #1-20 we’ll go over them then you’ll turn in tomorrow #’s 21-36; 47-55
Objectives: • Use properties of midsegments to solve problems • Use properties of perpendicular bisectors • Use properties of angle bisectors to identify equal distances such as the lengths of beams in a room truss.
In lesson 1.5, you learned that a segment bisector intersects a segment at its midpoint. A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Use Properties of perpendicular bisectors CP is a bisector of AB
Equidistant • A point is equidistant from two points if its distance from each point is the same. In the construction above, C is equidistant from A and B because C was drawn so that CA = CB.
Perpendicular bisector theorem • If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. If CP is the perpendicular bisector of AB, then CA = CB. Theorem 5.1 Perpendicular Bisector Theorem
Converse of the perpendicular bisector theorem • If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.
If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment. If DA = DB, then D lies on the perpendicular bisector of AB. Theorem 5.2: Converse of the Perpendicular Bisector Theorem
Refer to the diagram for Theorem 5.1. Suppose that you are given that CP is the perpendicular bisector of AB. Show that right triangles ∆ABC and ∆BPC are congruent using the SAS Congruence Postulate. Then show that CA ≅ CB. Plan for Proof of Theorem 5.1
Statements: CP is perpendicular bisector of AB. CP AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Given: CP is perpendicular to AB. Prove: CA≅CB
Statements: CP is perpendicular bisector of AB. CP AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given: CP is perpendicular to AB. Prove: CA≅CB
Statements: CP is perpendicular bisector of AB. CP AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Given: CP is perpendicular to AB. Prove: CA≅CB
Statements: CP is perpendicular bisector of AB. CP AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Reflexive Prop. Congruence. Given: CP is perpendicular to AB. Prove: CA≅CB
Statements: CP is perpendicular bisector of AB. CP AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Reflexive Prop. Congruence. Definition right angle Given: CP is perpendicular to AB. Prove: CA≅CB
Statements: CP is perpendicular bisector of AB. CP AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Reflexive Prop. Congruence. Definition right angle SAS Congruence Given: CP is perpendicular to AB. Prove: CA≅CB
Statements: CP is perpendicular bisector of AB. CP AB AP ≅ BP CP ≅ CP CPB ≅ CPA ∆APC ≅ ∆BPC CA ≅ CB Reasons: Given Definition of Perpendicular bisector Given Reflexive Prop. Congruence. Definition right angle SAS Congruence CPCTC Given: CP is perpendicular to AB. Prove: CA≅CB
In the diagram MN is the perpendicular bisector of ST. What segment lengths in the diagram are equal? Explain why Q is on MN. Ex. 1 Using Perpendicular Bisectors
What segment lengths in the diagram are equal? Solution: MN bisects ST, so NS = NT. Because M is on the perpendicular bisector of ST, MS = MT. (By Theorem 5.1). The diagram shows that QS = QT = 12. Ex. 1 Using Perpendicular Bisectors
Explain why Q is on MN. Solution: QS = QT, so Q is equidistant from S and T. By Theorem 5.2, Q is on the perpendicular bisector of ST, which is MN. Ex. 1 Using Perpendicular Bisectors
If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle. If mBAD = mCAD, then DB = DC Angle Bisector Theorem
If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle. If DB = DC, then mBAD = mCAD. Converse of the Angle Bisector Theorem
Given: D is on the bisector of BAC. DB AB, DC AC. Prove: DB = DC Plan for Proof: Prove that ∆ADB ≅ ∆ADC. Then conclude that DB ≅DC, so DB = DC. Ex. 2: Proof of angle bisector theorem
By definition of an angle bisector, BAD ≅ CAD. Because ABD and ACD are right angles, ABD ≅ ACD. By the Reflexive Property of Congruence, AD ≅ AD. Then ∆ADB ≅ ∆ADC by the AAS Congruence Theorem. By CPCTC, DB ≅ DC. By the definition of congruent segments DB = DC. Paragraph Proof
Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Developing Proof
Statements: D is in the interior of ABC. D is ___?_ from BA and BC. ____ = ____ DA ____, ____ BC __________ __________ BD ≅ BD __________ ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given
Statements: D is in the interior of ABC. D is EQUIDISTANT from BA and BC. ____ = ____ DA ____, ____ BC __________ __________ BD ≅ BD __________ ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given • Given
Statements: D is in the interior of ABC. D is EQUIDISTANT from BA and BC. DA = DC DA ____, ____ BC __________ __________ BD ≅ BD __________ ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given • Given • Def. Equidistant
Statements: D is in the interior of ABC. D is EQUIDISTANT from BA and BC. DA = DC DA _BA_, __DC_ BC __________ __________ BD ≅ BD __________ ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given • Given • Def. Equidistant • Def. Distance from point to line.
Statements: D is in the interior of ABC. D is EQUIDISTANT from BA and BC. DA = DC DA _BA_, __DC_ BC DAB = 90°DCB = 90° __________ BD ≅ BD __________ ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given • Given • Def. Equidistant • Def. Distance from point to line. • If 2 lines are , then they form 4 rt. s.
Statements: D is in the interior of ABC. D is EQUIDISTANT from BA and BC. DA = DC DA _BA_, __DC_ BC DAB and DCB are rt. s DAB = 90°DCB = 90° BD ≅ BD __________ ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given • Given • Def. Equidistant • Def. Distance from point to line. • If 2 lines are , then they form 4 rt. s. • Def. of a Right Angle
Statements: D is in the interior of ABC. D is EQUIDISTANT from BA and BC. DA = DC DA _BA_, __DC_ BC DAB and DCB are rt. s DAB = 90°DCB = 90° BD ≅ BD __________ ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given • Given • Def. Equidistant • Def. Distance from point to line. • If 2 lines are , then they form 4 rt. s. • Def. of a Right Angle • Reflexive Property of Cong.
Statements: D is in the interior of ABC. D is EQUIDISTANT from BA and BC. DA = DC DA _BA_, __DC_ BC DAB and DCB are rt. s DAB = 90°DCB = 90° BD ≅ BD ∆ABD ≅ ∆CBD ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given • Given • Def. Equidistant • Def. Distance from point to line. • If 2 lines are , then they form 4 rt. s. • Def. of a Right Angle • Reflexive Property of Cong. • HL Congruence Thm.
Statements: D is in the interior of ABC. D is EQUIDISTANT from BA and BC. DA = DC DA _BA_, __DC_ BC DAB and DCB are rt. s DAB = 90°DCB = 90° BD ≅ BD ∆ABD ≅ ∆CBD ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given • Given • Def. Equidistant • Def. Distance from point to line. • If 2 lines are , then they form 4 rt. s. • Def. of a Right Angle • Reflexive Property of Cong. • HL Congruence Thm. • CPCTC
Statements: D is in the interior of ABC. D is EQUIDISTANT from BA and BC. DA = DC DA _BA_, __DC_ BC DAB and DCB are rt. s DAB = 90°DCB = 90° BD ≅ BD ∆ABD ≅ ∆CBD ABD ≅ CBD BD bisects ABC and point D is on the bisector of ABC Given: D is in the interior of ABC and is equidistant from BA and BC. Prove: D lies on the angle bisector of ABC. Reasons: • Given • Given • Def. Equidistant • Def. Distance from point to line. • If 2 lines are , then they form 4 rt. s. • Def. of a Right Angle • Reflexive Property of Cong. • HL Congruence Thm. • CPCTC • Angle Bisector Thm.
Assignment: • You’ll do page 251 #1-11 we’ll go over them then you’ll turn #’s 12-31; 41, 42, 55-63