1 / 5

Elastic Staggered Grid FD of the Wave Equation

Elastic Staggered Grid FD of the Wave Equation. t-1/2. t+1/2. Particle velocity. t. t. . . xx. xz. r. -. t. =. t. -. t. t-1/2. ij-1. t+1/2. t+1/2.  x.  z. i+1j. xx. xx. xx. t. t. . . i-1j. r. zx. zz. ij+1. -. -. =. . .  w.  w.  u. .

noam
Download Presentation

Elastic Staggered Grid FD of the Wave Equation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Elastic Staggered Grid FD of the Wave Equation

  2. t-1/2 t+1/2 Particle velocity t t   xx xz r - t = t - t t-1/2 ij-1 t+1/2 t+1/2  x  z i+1j xx xx xx t t   i-1j r zx zz ij+1 - - =    w  w  u   u  w  u  u  w  w  u  x  z u,w  t  t  t  t  t t ) ( m - + = zx  z  x t ( ) l zz 2m + - - = ij-1  x  z  z t ( ) i-1j l xx 2m ij+1 - - + =  x  z  x Elastic 1st-Order Equations of Motion t

  3. t-1/2 t t t t t t t xx xx xz xz xz xz Elastic 1st-Order Equations of Motion t+1/2 ij-1 i-1j u,w u,w

  4. Elastic 1st-Order Equations of MotionStaggered Grid • Can Handle Water and Solid InterfacesNo 2nd derivatives, more accurate2-4 seems to be a favorite

  5. Elastic 1st-Order Equations of MotionStaggered Grid for it=2:nt%% Interior 2-2 FD of the Wave Equation (cns = 4*{c dt/dx}^2 )% k=[2:nz-1];j=[2:nx-1];% % Compute Particle Velocity Components% u1(j,k)=u1(j,k)+ dtx./dens(j,k).*(px1(j,k)-px1(j-1,k)+xy1(j,k)-xy1(j,k-1)); v1(j,k)=v1(j,k)+ dtx./dens(j,k).*(pz1(j,k+1)-pz1(j,k)+xy1(j+1,k)-xy1(j,k)); % Compute Stress Components% au=u1(j+1,k)-u1(j,k);av=v1(j,k)-v1(j,k-1); px1(j,k)=px1(j,k)+dtx*( ca(j,k).*au+cl(j,k).*av); pz1(j,k)=pz1(j,k)+dtx*( cl(j,k).*au+ca(j,k).*av); xy1(j,k)=xy1(j,k)+(cm(j,k)*dtx).*(u1(j,k+1)-u1(j,k)+v1(j,k)-v1(j-1,k)); % Free-surface boundary condition at the top boundary% k=1;for j=1:nx; xy1(j,k)=0.; pz1(j,k)=-pz1(j,k+1); end; % Add Source Term at ns points to one of field variables % if it<=r; for ns=1:nsp; % u1(xxx(ns),yyy(ns))=u1(xxx(ns),yyy(ns))+ricker(it); % Horiz. displ. src. v1(xxx(ns),yyy(ns))=v1(xxx(ns),yyy(ns))+ricker(it); % Vert. displ. src. % pz1(xxx(ns),yyy(ns))=pz1(xxx(ns),yyy(ns))+ricker(it); % px1(xxx(ns),yyy(ns))=px1(xxx(ns),yyy(ns))+ricker(it); end; end

More Related