1 / 32

Some ψ(3686) Physics at BESIII (software performance test)

Some ψ(3686) Physics at BESIII (software performance test). G.Li, K.L.He and X.H.MO for Analysis Software Group. BESIII annual meeting January 10-12, 2006. Content Introduction Ψ' - to- J/  transition processes J/  X, X:  0  0 ,  +  – ,  0 , , etc.

noe
Download Presentation

Some ψ(3686) Physics at BESIII (software performance test)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Some ψ(3686) Physics at BESIII (software performance test) G.Li, K.L.He and X.H.MO for Analysis Software Group BESIII annual meeting January 10-12, 2006

  2. Content • Introduction • Ψ' -to- J/  transition processes • J/  X, X: 0 0 , + – , 0, , etc. • cJ , cJ  J/ , multi-tracks . • Ψ' PP final state. • Summary BESIII simulation based on BOSS 5.0.0

  3. New discoveries and high precision Theoretical predication: B('00J/)/ B('+–J/)=50% PDG04 B('00J/)/ B('+–J/)=(59.3±4.3)% [r.e.7%] CLEOc:PRL94,232002(2005) B('00J/)/ B('+–J/)=(49.24±0.98)% [r.e.2%] Isospin conservation is confirmed at a 2% level

  4. Theoretical predication: 1.62% PR194, 1(1990) (1.92–3.45)% PRD24,1210(1988) PDG04 B('0J/)/ B('J/)=(3.04±0.70)% [r.e.23%] BESII:PRD70,012006(2004) B('0J/)/ B('J/)=(4.8±0.5)% [r.e.10.4%] CLEOc:PRL94,232002(2005) B('0J/)/ B('J/)=(4.1±0.4 ±0.1)% [r.e.10%] Isospin violation is observed at a ±0.4% level

  5. Ψ' -to- J/  transition processes • J/  X, X: 0, 0 0 , + – ,, etc. • cJ , cJ  J/  , multi-tracks . BESIII simulation based on BOSS 5.0.0

  6. '+–J/, J/  Sample: 50k All Double Gaussian Fit inv. mass +– without 4C fit inv. mass +– with 4C fit  = 2. 22 MeV  =2. 32 MeV inv. mass   without 4C fit  = 17. 4 MeV 4C-fit is unnecessary for '+–J/, J/   at BESIII

  7. '00J/ , J/  Sample: 50k All with 4C fit 1st 0 Crystal Ball Func. Crystal Ball Func. 2nd 0 = 5. 5 MeV = 5. 4 MeV Gauss Func. Gauss Func. m=137.9 MeV m=137.0 MeV inv. mass   Gauss1 Func. = 10.7 MeV Gauss2 Func. m=3.109 GeV

  8. '0J/ , J/  Sample: 50k inv. mass  inv. mass   Double Gaussian Crystal Ball Func. + Gauss Func.  = 4. 9 MeV  = 14.8 MeV m=3.102 GeV m=136.1 MeV with 4C fit without 4C fit cos of  in 0 c.m. system

  9. 'J/ , J/  Sample: 20k inv. mass  inv. mass   Double Gaussian Crystal Ball Func.  = 9. 3 MeV  = 12.3 MeV m=3.101 GeV m=550.8 MeV with 4C fit without 4C fit cos of  in  c.m. system

  10. Short Summary

  11. Ψ' J/  final state 14 M BESII Sample c1 c2  0 8 M BESIII M.C. Sample

  12. Ψ'cJ , cJJ/  BESIII: (8M , M.C.) m(c1)=3.508GeV, m(c2)=3.553GeV; (c1) =8.1MeV, (c2) =9.4MeV. BESII: (14M , Data) (c1) =13.3MeV; (c2) =13.2MeV. c1 c2 Ψ' J/(0,),(0,) c0  m()=549MeV, m(0)=135MeV. 0 m(c-)=3.413GeV, (c0) =9.0MeV.

  13. Ψ'cJ , cJ multi-tracks BESIII: (0.5M , M.C.) Ψ'cJ , cJ Ψ'cJ , cJKK c2 c2 c1 c1 c0 c0 c Ψ'cJ , cJ (6) c2 Events c1 c0 Inv.mass of chrg.trks. (GeV) Ψ' tail

  14. Ψ' PP final state. BESIII simulation based on BOSS 5.0.0

  15. ' Pseudoscalar-Pseudoscalar • Form factors of  and  can be calculated in framework of Hadronic Helicity Conservation (HHC), which could tell us about quark distribution amplitudes. So measurement of +–, K+K– final states are important and interesting, and also provide test for HHC. S.J. Brodsky and G.P. Lepage :PRD24, 2848 (1981).

  16. J/ , ’ PP • 12% rule problem • as we know VP mode is suppressed, eps. ; • but for PP channel, the ratio is enhanced: B ’ Ks KL = (5.24± 0.47± 0.48 )  10 – 5 BES:PRL92,052001(2004) B J/ Ks KL = (1.82 ± 0.04± 0.13 )  10 – 4 BES:PRD69,012003(2004) How about +–, K+K– ? PDG04: Qh (+–)=(54 ± 35)% Qh (K+K– )=(42 ± 30 )%

  17. The Relative Phase φ J/ψ Decays: 1. AP : 90 ° M. Suzuki, PRD63, 054021 (2001) 2. VP : (106 ±10) ° J. Jousset et al., PRD41, 1389 (1990) D. Coffman et al., PRD38, 2695 (1988) N. N. Achasov, talk at Hadron2001 3. PP : (90 ±10) ° M. Suzuki, PRD60, 051501 (1999) 4. VV : (138 ±37) ° L. Köpke and N. Wermes, Phys. Rep. 74, 67 (1989) 5. NN : (89 ±15) ° R. Baldini et al., PLB444, 111 (1998) Large phase ~ |90º| ψ’ Decays: 1. VP : φ =﹣90 ° or 180 °P. Wang et al. , PRD69, 057502 (2004) 2. PP : φ = (﹣82 ±29)° or (+121 ±27) °J. Z. Bai et al. , PRL9, 052001 (2004) Large phase ~ – 90º

  18. ’ PP PP -Parameterization π﹢π﹣ : (E+EC) K﹢K﹣: (√3/2)M +(E+EC) KS KL: (√3/2)M E.Haber and J.Perrier: Phys.Rev.D32, 2961 (1985) PP -Parametrization π﹢π﹣ : E K﹢K﹣: (√3/2) M +E KS KL: (√3/2) M +Continuum Contribution Three channels: π﹢π﹣, K﹢K﹣, andKS KL could be use to extract the phase (√3/2) M and E. φ

  19. /p=0.017(1+p2)1/2 (π)= 65 MeV (K)=62 MeV BESII Two peaks merge together, undistinguishable p(π)– p(K)=62 MeV

  20. BESIII p()=1.837GeV () =0.0117GeV ’ Events p(K)=1.775GeV (K) =0.0110GeV p()=1.542GeV () =0.0085GeV p(K)=1.467GeV (K) =0.0079GeV p()=1.881GeV () =0.0120GeV p(K)=1.820GeV (K) =0.0113GeV  K momentum (GeV) ’’ J/ Events Events  K  K momentum (GeV) momentum (GeV) All fit error around the level of 10 – 4GeV

  21. J/,’KSKL 14M ψ(2S) Bkg MC signal B J/ Ks KL = (1.82 ± 0.04± 0.13 )  10 – 4 PRD 69, 012003 (2004) Ks mass sidebands PRL 92, 052001 (2004) 58M J/ψ B ’ Ks KL = (5.24± 0.47± 0.48 )  10 – 5 signal MC Bkg K*0KS+c.c. PRD 70, 077101 (2004) B  ’’ Ks KL < 2.1  10 – 4 (90% C.L.)

  22. BESIII BESII @ ’ p(Ks)=1.768GeV (Ks) =0.0342GeV ’ Events p(Ks)=1.762GeV (Ks) =0.0134GeV B.G. need further study KS momentum (GeV) Gauss fit results ’’ p(Ks)=1.455GeV (Ks) =0.0119GeV J/ p(Ks)=1.808GeV (Ks) =0.0137GeV Events Events KS KS momentum (GeV) momentum (GeV)

  23. Summary • Based on BESIII detector simulation system, we present some Monte Carlo distributions for transition processes. From fit, we obtain the detector resolutions for +– , 0 ,  , c1, c2,etc. Most of indexes are greatly improved comparing with those of BESII detector. • Since PPdecay mode is concerned with many interesting physics, we check momentum resolutions of +– , K+K–, KSKL channels at BESIII, and see the new detector will provide us with fairly good resolution for particle’s identification. • Our limited performance tests based on BESIII detector simulation indicate that there are many important and interesting physics could be studied with the forthcoming new detector. Thanks a lot !

  24. Back-up

  25. Summary

  26. Ψ' J/  final state 14 M BESII Sample c1  c2 0 1 M BESIII M.C. Sample

  27. BESIII: (1M , M.C.) m(c1)=3.508GeV, m(c2)=3.553GeV; (c1) =8.1MeV, (c2) =9.4MeV. BESII: (14M , Data) (c1) =13.3MeV; (c2) =13.2MeV. Ψ'cJ , cJJ/  c1 c2 BESIII : 1 M Monte Carlo Sample Ψ' J/(0,),(0,)  m()=549MeV, m(0)=134MeV. 0

  28. Exclusive Method ’ J/ cJ μμ J/ oJ/ μμ μμ

  29. The phase study in e+e – experiment – φ Phase interference interference Take the continuum contribution and its interference effect into consideration , we could determine not only the magnitudebut also the sign of the phase. Furthermore, the cont. contr. and its int. effect will exert obvious influence on BR. measurement.

  30. Parameterization and phase study DASP: BES-I: BES Collaboration:PRL 92, 052001 (2004) B’ Ks K L= (5.24 ± 0.47± 0.48) 10 – 5 C.Z.Yuan,P.Wang and X.H.Mo: PLB567, 74 (2003) =(– 8229)°, or (+12127)°

  31. BESIII ’ p()=1.837GeV () =0.0117GeV p(K)=1.775GeV (K) =0.0110GeV  K p()=1.542GeV () =0.0085GeV p(K)=1.467GeV (K) =0.0079GeV p()=1.881GeV () =0.0120GeV p(K)=1.820GeV (K) =0.0113GeV /p=0.003(1+p2)1/2 ’’ J/  K  K All fit error around the level of 10 – 4GeV

  32. Wang, Yuan and Mo: PLB574,41(2004); & hep-ph/0402227; “12%” rule and mixing model • ’  P P enhanced • ’ V T suppressed • ’ V P some greatly suppressed (such as   & K*0 K0) Some recent studies indicate the S- and D-wave mixing model is a Natural, Simple and Calculable model ! It probably gives a unified explanation for all 12 % rule deviated decays “12%” rule: 〈f |J/〉 / 〈f| 23S1〉 = ee (J/)/ ee (23S1 )  〈f| 23S1〉 J.L.Rosner : PRD64,094992(2001) Mixing : 1.〈f |〉 = 〈f| 23S1〉 cos – 〈f| 13D1〉sin 〈f |〉 & 〈f| 23S1〉  〈f| 13D1〉 2. 〈f |  〉= 〈f | 23S1〉 sin + 〈f| 13D1〉cos  〈f |  〉  Br(f) J/  = | 13S1〉, &   = | 23S1〉 & | 13D1〉 : 〈f |〉 = 〈f| 23S1〉 cos – 〈f| 13D1〉sin, 〈f |  〉= 〈f | 23S1〉 sin + 〈f| 13D1〉cos . (=12º) The measurement at   can be used to test the mixing model !

More Related