1 / 12

平 方 差 公 式

平 方 差 公 式. 平方差公式. 用语言叙述平方差公式. (a+b)(a-b)=a2-b2. 两数和与这两数差的积,等于它们的平方差。. a. a. b. a. b. 它还可以这样证明. 剩下的面积 =a2-b2. 长方形的面积 =(a+b)(a-b). 接力赛. ⑴ (a+1)(a-1)=. a2-1. ⑵ (3+x)(3-x)=. 9-x2. a2-(2b)2. =a2-4b2. ⑶ (a+2b)(a-2b)=. =9x2-25y2. ⑷ (3x+5y)(3x-5y)=. (3x)2-(5y)2.

Download Presentation

平 方 差 公 式

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 平 方 差 公 式

  2. 平方差公式 用语言叙述平方差公式 (a+b)(a-b)=a2-b2 两数和与这两数差的积,等于它们的平方差。

  3. a a b a b 它还可以这样证明 剩下的面积=a2-b2 长方形的面积=(a+b)(a-b)

  4. 接力赛 ⑴ (a+1)(a-1)= a2-1 ⑵ (3+x)(3-x)= 9-x2 a2-(2b)2 =a2-4b2 ⑶ (a+2b)(a-2b)= =9x2-25y2 ⑷ (3x+5y)(3x-5y)= (3x)2-(5y)2 =100s2-9t2 ⑸ (10s-3t)(10s+3t)= (10s)2-(3t)2 (-m)2-n2 =m2-n2 ⑹ (-m+n)(-m-n)=

  5. 1 1 1 1 1 1 a2-( b)2 1 2 2 2 2 2 2 = a2-4b2 4 1 =a2- b2 4 ⑻( a-2b)(2b+ a)= ( a)2-(2b)2 ⑼( b+a)(- b+a)= 接力赛 =4x2-9y2 (-2x)2-(3y)2 ⑺ (-2x-3y) (-2x+3y)= =y2-16x2 ⑽ (-4x+y)(y+4x)= y2-(4x)2 问题:利用平方差公式计算的关键是: 准确确定a和b 怎样确定a与b: 符号相同的看作a,符号不同的看作b

  6. 你出题,我来做 同桌间每人利用平方差公式出两道题, 然后交换解答,找出对方做错的地方,并 通过互助共同解决问题。

  7. 2 2 5 3 3 9 (50+)(50-)=2499 ⑵50 ×49 = 1 2 3 3 速算PK (100+2)(100-2)=9996 ⑴ 102×98= ⑶ 59.8×60.2= (60-0.2)(60+0.2)=3599.96 ⑷ 5678×5680-56792 =(5679-1)(5679+1)-56792 = 56792-1- 56792 =-1

  8. 仔细填一填 (1) (x+3)( )=x2-9 X-3 (2) (-1-2x)( 2x-1)= 1-4x2 (3) (m+n)( )=n2-m2 n-m (4) ( )(-y-1)=1-y2 -1+y -3a2-2b2 (5) (-3a2+2b2)( )=9a4-4b4

  9. 精心挑一挑 下列各式能否用平方差公式进行计算 ⑴ (7ab-3b)(7ab+3b) ⑵ (-8+a)(a-8) ⑷ (x+3)(y-3) ⑸ (-3-m)(m-3) ⑹ (a-b)(b-a) ⑺ (a2+b2)(a2-b2)

  10. 自我挑战 (2+1)(22+1)(24+1)(28+1)+1 (a-1)(a+1)(a2+1)(a4+1)(a8+1)

  11. 课堂小结 1. 本节课你学会了什么?它有什么作用? 2.利用公式计算需要注意什么?你还有什么疑惑吗? 3.你对自己的表现满意吗?为什么?

  12. 再见 再见

More Related