1 / 22

Far-Side Imaging from Time-Distance Helioseismology

Far-Side Imaging from Time-Distance Helioseismology. Junwei Zhao W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA94305-4085. 2006 Sheffield Workshop.

noel-solis
Download Presentation

Far-Side Imaging from Time-Distance Helioseismology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Far-Side Imaging from Time-Distance Helioseismology Junwei Zhao W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA94305-4085

  2. 2006 Sheffield Workshop

  3. Irene and I took a same train from Sheffield to London, without knowing exactly when we would fly out from London due to a terrorists’ event targeting Heathrow airport. We had a useful discussion on the train, and she encouraged me to develop a time-distance far-side imaging method, which would not just to confirm holography results, but also complement those results.

  4. In the Following 3 months … It turned out that the far-side imaging analysis was way easier than I had thought. From scratch to seeing the first far-side active region, it only took me about 3 weeks. The method was based double-double acoustic skips. Then I further developed the analysis codes for single-triple and double-triple measurement schemes. In about 3 months, I got all the materials for this paper. It was a very productive 3-month period.

  5. Far-Side Acoustic Signals (a) Acoustic power spectrum using MDI medium-l data; (b) time-distance diagram obtained from 24-hr MDI data; (c) time-distance diagram obtained using only signals inside the white box in (a).

  6. Measurement Schemes Panel (a) shows the measurement scheme using a 2 by 2 skips on either side of the target region; panel (b) shows the measurement scheme using a 1 by 3 skips on either side; and panel (c) shows the scheme using a 2 by 3 skips on either side.

  7. Far-Side Images of AR10486 and AR10488 First row shows the travel-time maps measured using 4-skip schemes, and the second row shows the travel-time maps measured using 5-skip schemes. The third row shows a combination of both sets of measurements. The fourth row highlights the results by saturating the measurements.

  8. Three-Skip Measurement Scheme First row shows travel-time deficits measured using 3-skip scheme. Note that the ray paths are not able to fully cover the complete far side, leaving a big hole near the center. Second row shows results from a combination of 4- and 5-skip measurements. Third row shows results combining all 3-, 4-, and 5-skip measurements. A combination seems to only improve the final results moderately.

  9. Then Enters HMI … It has long been agreed, among the few who were involved in the far-side imaging, that both holography and time-distance far-side images be put side by side online, so as to give more confidence to the users of these data. I felt very bad that my long-time promise was not realized even when HMI was over 4 years old. It was particularly sad to think about that Irene was not able to see how the HMI time-distance far-side images look like. I spent nearly the whole last month, building up the HMI time-distance far-side imaging pipeline.

  10. Data Reduction • One essential thing is how to reduce HMI resolution to fit the far-side imaging calculation. I first remapping the 4096×4096 data to 1024×1024 in Postel’s coordinate. Then this data is Gaussian convolved to 200×200 data. • I tried different approaches, and found that the final far-side images did not change significantly. Probably, the hmi.vw_V_45s may be the most time efficient data without loss of much accuracy.

  11. 4-skip 5-skip 4- and 5-skip

  12. 4-skip 5-skip 4- and 5-skip

  13. 4-kip 5-skip 4- and 5-skip

  14. To increase the reliability of the far-side active region images, Charlie used 5 days’ average data to increase the signal-to-noise ratio. This is a brilliant approach, making the far-side regions more consistent from day to day.

  15. Center-to-Limb Travel-Time Variation Different from holography technique, the time-distance analysis does not show substantial center-to-limb variations. The variation seen in our analysis is typically less than 5 sec, and typically smaller using MDI data than using HMI data.

  16. Time-distance far-side images provide a useful complement to the existing holography far-side images. To summarize, for the time-distance far-side images, about40°-wide area near the west limb often has strong spurious features [this phenomenon was not seen in MDI data analysis], while other areas (the central part and the part near the east limb) provide consistent and sometimes better results than holography. A combination of both sets of images will greatly enhance the forecast capability. And now, finally, I followed my promise to Irene and a few others.

More Related