530 likes | 691 Views
Accessing files with NLTK Regular Expressions. Accessing additional files. Python has tools for accessing files from the local directories and also for obtaining files from the web. Python module for web access. urllib2 Note – this is for Python 2.x, not Python 3
E N D
Accessing additional files • Python has tools for accessing files from the local directories and also for obtaining files from the web.
Python module for web access • urllib2 • Note – this is for Python 2.x, not Python 3 • Python 3 splits the urllib2 materials over several modules • import urllib2 • urllib2.urlopen(url [,data][, timeout]) • Establish a link with the server identified in the url and send either a GET or POST request to retrieve the page. • The optional data field provides data to send to the server as part of the request. If the data field is present, the HTTP request used is POST instead of GET • Use to fetch content that is behind a form, perhaps a login page • If used, the data must be encoded properly for including in an HTTP request. See http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1 • timeout defines time in seconds to be used for blocking operations such as the connection attempt. If it is not provided, the system wide default value is used. http://docs.python.org/library/urllib2.html
URL fetch and use • urlopen returns a file-like object with methods: • Same as for files: read(), readline(), readlines(), fileno(), close() • New for this class: • info() – returns meta information about the document at the URL • getcode() – returns the HTTP status code sent with the response (ex: 200, 404) • geturl() – returns the URL of the page, which may be different from the URL requested if the server redirected the request
Reminder, file access • file.close() • File no longer available • file.fileno() • returns the file descriptor, not usually needed. • file.read([size]) • read at most size bytes. If size not specified, read to end of file. • file.readline([size]) • read one line. If size provided, read that many bytes. Empty string returned if EOF encountered immediately • file.readlines([sizehint]) • return a list of lines. If sizehint present, return approximately that number of lines, possibly rounding to fill a buffer. Where file is the internal name of the file object
URL info • info() provides the header information that http returns when the HEAD request is used. • ex: >>> print mypage.info() Date: Mon, 12 Sep 2011 14:23:44 GMT Server: Apache/1.3.27 (Unix) Last-Modified: Tue, 02 Sep 2008 21:12:03 GMT ETag: "2f0d4-215f-48bdac23" Accept-Ranges: bytes Content-Length: 8543 Connection: close Content-Type: text/html
URL status and code >>> print mypage.getcode() 200 >>> print mypage.geturl() http://www.csc.villanova.edu/~cassel/
Messy HTML • HTML is not always perfect. • Browsers may be forgiving. • Human and computerized html generators make mistakes. • Tools for dealing with imperfect html include Beautiful Soup. http://www.crummy.com/software/BeautifulSoup/ • Beautiful Soup parses anything you give it, and does the tree traversal stuff for you. You can tell it "Find all the links", or "Find all the links of class externalLink", or "Find all the links whose urls match "foo.com", or "Find the table heading that's got bold text, then give me that text."
Exceptions: How to Deal with Error Situations number = 0 while not 1 <= number <= 10: try: number= int(raw_input('Enter number from 1 to 10: ')) if not 1 <= number <= 10: print 'Your number must be from 1 to 10:' exceptValueError: print 'That is not a valid integer.' Here: recognize an error condition and deal with it If the named error occurs, the “except” clause is executed and the loop is terminated. book slide
Checking for failed url fetch import urllib2 url = raw_input("Enter the URL of the page to fetch: ") try: linecount=0 page=urllib2.urlopen(url) result = page.getcode() if result == 200: for line in page: print line linecount+=1 print page.info() print page.getcode() print "Page contains ",linecount," lines." except: print "\nBad URL: ", url The except clause is triggered by any error in the try
Character encoding • ASCII, Unicode • American Standard Code for Information Interchange • Everything stored in the computer must be expressed as a bit pattern. • For numbers, easy – convert to binary • For integers, direct conversion • For real numbers, floating point • somewhat arbitrary choice of how to represent where the decimal point is, how much precision for the whole number part, how much for the exponent. • For non-numeric characters, some arbitrary choice of what bit pattern to assign to each character
Coding considerations • If the numeric interpretation of the bit string assigned to one character is less than that for another character, the first will sort to an earlier position. • Thus, assign the codes in the sort order desired. • Clearly, A before B • A before or after a? • 8 before or after A? • * before or after A, 8? • Once the choices are made and the code is constructed, sort order is determined. Any need to change will have to be dealt with in individual applications
Representing the bit patterns • All the encodings can be represented as numeric values. Example ASCII code for “K” – two bytes: 0100 1011 • Decimal 75 • familiar, but not really convenient for representing bits. • Hexadecimal 4B • one character for each four bits. • Octal 113 (_01 001 011) • one character for each three bits, from the right
Limitations of ASCII • Original ASCII used only 7 of the available 8 bits • last bit kept for parity checking • Limited to the number of characters that can be represented. • Extended – use the 8th bit • There are several variations • See http://www.ascii-code.com/
Extended ASCII Hex 80 to FF Source: http://www.cdrummond.qc.ca/cegep/informat/Professeurs/Alain/files/ascii.htm
Unicode • ASCII is just one encoding example • ASCII, even extended, does not have enough space for all needed encodings. • Different schemes in use present potential conflict – different codes for the same symbol, different symbols with the same code if you deal with more than one scheme. • Enter unicode. See unicode.org
From unicode.org Unicode provides a unique number for every character, no matter what the platform, no matter what the program, no matter what the language. The Unicode Standard has been adopted by such industry leaders as Apple, HP, IBM, JustSystems, Microsoft, Oracle, SAP, Sun, Sybase, Unisys and many others. Unicode is required by modern standards such as XML, Java, ECMAScript (JavaScript), LDAP, CORBA 3.0, WML, etc., and is the official way to implement ISO/IEC 10646. It is supported in many operating systems, all modern browsers, and many other products. The emergence of the Unicode Standard, and the availability of tools supporting it, are among the most significant recent global software technology trends.
Unicode • There are three encoding forms: • 8, 16, 32 bits • UTF-8 includes the ASCII codes • UTF-16 all commonly used symbols, other symbols available in pairs of 16-bit units • UTF-32 when size is not an issue. All symbols in 32 bit string of bits
Regular Expressions • Processing text often involves selecting for specific characteristics • Regular expressions • powerful tool for describing the characteristics of interest • Access in python: import re • Raw string notation: precede a string with r • r’\n’means backslash then n, not new line
Regular Expression special characters • ‘^’ (Caret) Matches the start of the string • ‘$” matches the end of the string, or just before newline at the end of a string • ‘*’ match 0 or more repetitions of the preceding re. 0*1 matches any number of 0s followed by 1: 1, 01, 001, 0001, etc. • ‘+’ matches 1 or more repetition. 0+1 matches 01, 001, 0001, etc., but not 1 • ‘?’ matches 0 or 1 repetitions. 0?1 matches 1 and 01 only • {m,n} matches between m and n repetitions. If no n specified, matches only exactly m repetitions. 0{2,4}1 matches 001, 0001, 00001 • {m,n}? match as few as possible of these. 0{2,4}1 will match 001 if it is available, or 0001 if no 001 is available, or 00001 if no shorter string is available. • \ escape special character, so you can search for * or ? etc • [ ] used to indicate a set of characters. [abc] will match a or b or c • range: [0-9A-Za-z] will match any digit or letter, upper or lower case • Special characters lose meaning in set: [\*] matches \ or * • ^ = negate the set [^0-9] will match anything except a digit • | means “or” A|B means the character A or the character B. Options are tested left to right and the search quits when a match is found. This gives priority to the symbol listed first.
Python re import nltk import re wordlist = [w for w in nltk.corpus.words.words('en') if w.islower()] print [w for w in wordlist if re.search('ed$', w)] matches all words in the list that end in ed Wildcard . matches any single character Crossword match example: [w for w in wordlist if re.search('^..j..t..$', w)] Crossword match example: ['abjectly', 'adjuster', 'dejected', 'dejectly', 'injector', 'majestic', 'objectee', 'objector', 'rejecter', 'rejector', 'unjilted', 'unjolted', 'unjustly’]
Spot check • Your Turn: The caret symbol ^ matches the start of a string, just like the $ matches the end. What results do we get with the above example if we leave out both of these, and search for «..j..t..»? • Think about it first. What do you expect? • Then run it. Crossword match example: ['abjectedness', 'abjection', 'abjective', 'abjectly', 'abjectness', 'adjection', 'adjectional', 'adjectival', 'adjectivally', 'adjective', 'adjectively', 'adjectivism', 'adjectivitis', 'adjustable', 'adjustably', 'adjustage', 'adjustation', 'adjuster', 'adjustive', 'adjustment', 'antejentacular', 'antiprojectivity', 'bijouterie', 'coadjustment', 'cojusticiar', 'conjective', 'conjecturable', 'conjecturably', 'conjectural', 'conjecturalist', 'conjecturality', 'conjecturally', 'conjecture', 'conjecturer', 'coprojector', 'counterobjection', 'dejected', 'dejectedly', 'dejectedness', 'dejectile', 'dejection', …
? as optional character • ? indicates 0 or 1 occurrences • ^e-?mail$ • matches either email or e-mail • ^[Ee]-?mail$ • allows either upper or lower case E • Note that [^Ee] matches anything that is not E,e • the negation is inside the [ ]
Texting example • First letter from ghi, second from mno, then jlk, then def • Take away the ^ and $ [w for w in wordlist if re.search('^[ghi][mno][jlk][def]$', w) ['gold', 'golf', 'hold', 'hole'] 'tinkerlike', 'tinkerly', 'tinkershire', 'tinkershue', 'tinkerwise', 'tinlet', 'titleholder', 'toolholder', 'toolholding', 'touchhole', 'trainless', 'traphole', 'trinkerman', 'trinket', 'trinketer', 'trinketry', 'trinkety', 'triole', 'trioleate', 'triolefin', 'trioleic’, …
Python use of re • re.search(pattern, string[,flags]) • scan through string looking for pattern. Return None if not found. • re.match(pattern, string) • if zero or more characters at the beginning of string match the re pattern, return a correstpondingMatchObject instance. Return None if string does not match the pattern. • re.split(pattern,string) • Split string by occurrences of pattern. from: http://docs.python.org/library/re.html some options not included
\w = word class: equivalent to [a-zA-Z0-9_] \W = complement of \w – all characters other than letters and digits >>> re.split('\W+', 'Words, words, words.') ['Words', 'words', 'words', ''] >>> re.split('(\W+)', 'Words, words, words.') ['Words', ', ', 'words', ', ', 'words', '.', ''] >>> re.split('\W+', 'Words, words, words.', 1) ['Words', 'words, words.'] >>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE) ['0', '3', '9']
re.findall(pattern, string[,flags]) • return all non-overlapping matches of pattern in string, as a list of strings. String scanned left-to-right. Matches returned in order found.
Applications of re • Extract word pieces • another > word = 'supercalifragilisticexpialidocious' >>> re.findall(r'[aeiou]', word) ['u', 'e', 'a', 'i', 'a', 'i', 'i', 'i', 'e', 'i', 'a', 'i', 'o', 'i', 'o', 'u'] >>> len(re.findall(r'[aeiou]', word)) 16 >>> wsj = sorted(set(nltk.corpus.treebank.words())) >>> fd = nltk.FreqDist(vs for word in wsj ... for vs in re.findall(r'[aeiou]{2,}', word)) >>> fd.items() vu50390:ch3 lcassel$ python re2.py [('io', 549), ('ea', 476), ('ie', 331), ('ou', 329), ('ai', 261), ('ia', 253), ('ee', 217), ('oo', 174), ('ua', 109), ('au', 106), ('ue', 105), ('ui', 95), ('ei', 86), ('oi', 65), ('oa', 59), ('eo', 39), ('iou', 27), ('eu', 18), ('oe', 15), ('iu', 14), ('ae', 11), ('eau', 10), ('uo', 8), ('ao', 6), ('oui', 6), ('eou', 5), ('uou', 5), ('uee', 4), ('aa', 3), ('ieu', 3), ('uie', 3), ('eei', 2), ('aia', 1), ('aii', 1), ('aiia', 1), ('eea', 1), ('iai', 1), ('iao', 1), ('ioa', 1), ('oei', 1), ('ooi', 1), ('ueui', 1), ('uu', 1)]
Spot check Your Turn: In the W3C Date Time Format, dates are represented like this: 2009-12-31. Replace the ? in the following Python code with a regular expression, in order to convert the string '2009-12-31' to a list of integers [2009, 12, 31]: [int(n) for n in re.findall(?, '2009-12-31')]
Processing some text Noting redundancy in English and eliminating internal word vowels: >>> regexp = r'^[AEIOUaeiou]+|[AEIOUaeiou]+$|[^AEIOUaeiou]' >>> def compress(word): ... pieces = re.findall(regexp, word) ... return ''.join(pieces) ... >>> english_udhr = nltk.corpus.udhr.words('English-Latin1') >>> print nltk.tokenwrap(compress(w) for w in english_udhr[:75]) UnvrslDclrtn of HmnRghtsPrmbleWhrsrcgntn of the inhrntdgnty and of the eql and inlnblerghts of all mmbrs of the hmnfmly is the fndtn of frdm , jstce and pce in the wrld , Whrsdsrgrd and cntmptfrhmn rghtshversltd in brbrs acts whchhveoutrgd the cnscnce of mnknd , and the advnt of a wrld in whchhmnbngsshllenjyfrdm of spch and
Tabulating combinations >>> rotokas_words = nltk.corpus.toolbox.words('rotokas.dic') >>> cvs = [cv for w in rotokas_words for cv in re.findall\(r'[ptksvr][aeiou]', w)] >>> cfd = nltk.ConditionalFreqDist(cvs) >>> cfd.tabulate() a eiou k 418 148 94 420 173 p 83 31 105 34 51 r 187 63 84 89 79 s 0 0 100 2 1 t 47 8 0 148 37 v 93 27 105 48 49
Inspecting the words behind the numbers >>> cv_word_pairs = [(cv, w) for w in rotokas_words ... for cv in re.findall(r'[ptksvr][aeiou]', w)] >>> cv_index = nltk.Index(cv_word_pairs) >>> cv_index['su'] ['kasuari'] >>> cv_index['po'] ['kaapo', 'kaapopato', 'kaipori', 'kaiporipie', 'kaiporivira', 'kapo', 'kapoa', 'kapokao', 'kapokapo', 'kapokapo', 'kapokapoa', 'kapokapoa', 'kapokapora', 'kapokapora', 'kapokaporo', 'kapokaporo', 'kapokari', 'kapokarito', 'kapokoa', 'kapoo', 'kapooto', 'kapoovira', 'kapopaa', 'kaporo', 'kaporo', 'kaporopa', 'kaporoto', 'kapoto', 'karokaropo', 'karopo', 'kepo', 'kepoi', 'keposi', 'kepoto']
Stemming • Simple approach: >>> def stem(word): ... for suffix in ['ing', 'ly', 'ed', 'ious', 'ies', 'ive', 'es', 's', 'ment']: ... if word.endswith(suffix): ... return word[:-len(suffix)] ... return word
Building a stemmer • Build a disjunction of all suffixes • Take a look. What do we have here? • r – raw string. Interpret everything just as what you see. • ^ from the beginning • . match anything • * repeat the match anything 0 or more times • (ing|ly|ed|ious|ies|ive|es|s|ment) – look for one of these • $ at the end of the string • ‘processing’ -- the string • result = re.findall(r'^.*(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing') ['ing']
To get the whole word • Need to add ?: >>> re.findall(r'^.*(?:ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing') ['processing']
Split the word into stem and suffix • Some subtleties involved >>> re.findall(r'^(.*)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing') [('process', 'ing')] Looks ok, but >>> re.findall(r'^(.*)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes') [('processe', 's')] The * is a greedy operator. It takes as much as it can get. >>> re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes') [('process', 'es')] *? is non greedy version. >>> re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$', 'language') [('language', '')] ? makes the suffix list optional, matches when none present
A stemming function >>> def stem(word): ... regexp = r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$' ... stem, suffix = re.findall(regexp, word)[0] ... return stem ... >>> raw = """DENNIS: Listen, strange women lying in ponds distributing swords ... is no basis for a system of government. Supreme executive power derives from ... a mandate from the masses, not from some farcical aquatic ceremony.""" >>> tokens = nltk.word_tokenize(raw) >>> [stem(t) for t in tokens] ['DENNIS', ':', 'Listen', ',', 'strange', 'women', 'ly', 'in', 'pond', 'distribut', 'sword', 'i', 'no', 'basi', 'for', 'a', 'system', 'of', 'govern', '.', 'Supreme', 'execut', 'power', 'deriv', 'from', 'a', 'mandate', 'from', 'the', 'mass', ',', 'not', 'from', 'some', 'farcical', 'aquatic', 'ceremony', '.'] Note some strange “words” returned as the stem: basi from basis and deriv and execut etc.
The Porter Stemmer • Official home: http://tartarus.org/martin/PorterStemmer/index-old.html • The python version • http://tartarus.org/martin/PorterStemmer/python.txt
>>> from nltk.corpus import gutenberg, nps_chat >>> moby = nltk.Text(gutenberg.words('melville-moby_dick.txt')) >>> moby.findall(r"<a> (<.*>) <man>") monied; nervous; dangerous; white; white; white; pious; queer; good; mature; white; Cape; great; wise; wise; butterless; white; fiendish; pale; furious; better; certain; complete; dismasted; younger; brave; brave; brave; brave >>> chat = nltk.Text(nps_chat.words()) >>> chat.findall(r"<.*> <.*> <bro>") you rule bro; telling you bro; utwiztedbro >>> chat.findall(r"<l.*>{3,}") lollollol; lmaolollol; lollollol; la la la la la; la la la; la la la; lovely lollol love; lollollol.; la la la; la la la ( ) means only that part is returned
re.show import nltk, re sent = "Colorless green ideas sleep furiously" nltk.re_show('l',sent) nltk.re_show('gree',sent) Co{l}or{l}ess green ideas s{l}eepfurious{l}y Colorless {gree}n ideas sleep furiously
Word patterns >>> from nltk.corpus import brown >>> hobbies_learned = nltk.Text(brown.words(categories=['hobbies', 'learned'])) >>> hobbies_learned.findall(r"<\w*> <and> <other> <\w*s>") speed and other activities; water and other liquids; tomb and other landmarks; Statues and other monuments; pearls and other jewels; charts and other items; roads and other features; figures and other objects; military and other areas; demands and other factors; abstracts and other compilations; iron and other metals
Spot Check • How would you find all instances of the pattern as x as y • example: as easy as pie • Can you handle this: as pretty as a picture
More on Stemming >>> porter = nltk.PorterStemmer() >>> lancaster = nltk.LancasterStemmer() >>> [porter.stem(t) for t in tokens] ['DENNI', ':', 'Listen', ',', 'strang', 'women', 'lie', 'in', 'pond', 'distribut', 'sword', 'is', 'no', 'basi', 'for', 'a', 'system', 'of', 'govern', '.', 'Suprem', 'execut', 'power', 'deriv', 'from', 'a', 'mandat', 'from', 'the', 'mass', ',', 'not', 'from', 'some', 'farcic', 'aquat', 'ceremoni', '.'] >>> [lancaster.stem(t) for t in tokens] ['den', ':', 'list', ',', 'strange', 'wom', 'lying', 'in', 'pond', 'distribut', 'sword', 'is', 'no', 'bas', 'for', 'a', 'system', 'of', 'govern', '.', 'suprem', 'execut', 'pow', 'der', 'from', 'a', 'mand', 'from', 'the', 'mass', ',', 'not', 'from', 'som', 'farc', 'aqu', 'ceremony', '.'] >>> wnl = nltk.WordNetLemmatizer() >>> [wnl.lemmatize(t) for t in tokens] ['DENNIS', ':', 'Listen', ',', 'strange', 'woman', 'lying', 'in', 'pond', 'distributing', 'sword', 'is', 'no', 'basis', 'for', 'a', 'system', 'of', 'government', '.', 'Supreme', 'executive', 'power', 'derives', 'from', 'a', 'mandate', 'from', 'the', 'mass', ',', 'not', 'from', 'some', 'farcical', 'aquatic', 'ceremony', '.'] Only keeps stems if in dictionary
Tokenizing • We have done split, but it was not very complete. • Built in re abbreviation for any kind of white space: \s >>> re.split(r'\s+', raw) ['Dennis:', 'Listen,', 'strange', 'women', 'lying', 'in', 'ponds', 'distributing', 'swords', 'is', 'no', 'basis', 'for', 'a', 'system', 'of', 'government.', 'Supreme', 'executive', 'power', 'derives', 'from', 'a', 'mandate', 'from', 'the', 'masses,', 'not', 'from', 'some', 'farcical', 'aquatic', 'ceremony.'] >>>
Tokenizing • Split on anything other than a word character (A-Za-z0-9) >>> re.split(r'\W+', raw) ['', 'When', 'I', 'M', 'a', 'Duchess', 'she', 'said', 'to', 'herself', 'not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', 'I', 'won', 't', 'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL', 'Soup', 'does', 'very', 'well', 'without', 'Maybe', 'it', 's', 'always', 'pepper', 'that', 'makes', 'people', 'hot', 'tempered', ''] Note: I’M became I M re.findall(r'\w+', raw) Splits on the words, instead of the separators «\w+|\S\w*» will first try to match any sequence of word characters. If no match is found, it will try to match any non-whitespace character (\S is the complement of \s) followed by further word characters. This means that punctuation is grouped with any following letters (e.g. 's) but that sequences of two or more punctuation characters are separated.
Getting there >>> re.findall(r'\w+|\S\w*', raw) ["'When", 'I', "'M", 'a', 'Duchess', ',', "'", 'she', 'said', 'to', 'herself', ',', '(not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', ')', ',', "'I", 'won', "'t", 'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL', '.', 'Soup', 'does', 'very', 'well', 'without', '-', '-Maybe', 'it', "'s", 'always', 'pepper', 'that', 'makes', 'people', 'hot', '-tempered', ',', "'", '.', '.', '.'] Now get internal marks – ‘M and ‘t
Regular expression symbols • Summary Symbol Function \b Word boundary (zero width) \d Any decimal digit (equivalent to [0-9]) \D Any non-digit character (equivalent to [^0-9]) \s Any whitespace character (equivalent to [ \t\n\r\f\v] \S Any non-whitespace character (equivalent to [^ \t\n\r\f\v]) \w Any alphanumeric character (equivalent to [a-zA-Z0-9_]) \W Any non-alphanumeric character (equivalent to [^a-zA-Z0-9_]) \t The tab character \n The newline character