340 likes | 437 Views
第十四章 结构体与共用体. 14.1 结构体 结构体是 一种 构造 数据类型 用途:把 不同类型 的数据组合成一个整体------- 自定义 数据类型 结构体类型定义. 合法标识符 可省 : 无名结构体. struct [ 结构体名 ] { 类型标识符 成员名; 类型标识符 成员名; ……………. } ;. 成员类型可以是 基本型或构造型. struct 是 关键字 , 不能省略. 2 字节. num. …. name. 20 字节. 1 字节. sex. 2 字节. age. 4 字节. score.
E N D
第十四章 结构体与共用体 • 14.1结构体 • 结构体是一种构造数据类型 • 用途:把不同类型的数据组合成一个整体-------自定义数据类型 • 结构体类型定义 合法标识符 可省:无名结构体 struct [结构体名] { 类型标识符 成员名; 类型标识符 成员名; ……………. }; 成员类型可以是 基本型或构造型 struct是关键字, 不能省略
2字节 num … name 20字节 1字节 sex 2字节 age 4字节 score ….. addr 30字节 例 struct student { int num; char name[20]; char sex; int age; float score; char addr[30]; }; 结构体类型定义描述结构 的组织形式,不分配内存
struct 结构体名 { 类型标识符 成员名; 类型标识符 成员名; ……………. }; struct 结构体名 变量名列表; • 14.2结构体变量的定义 • 先定义结构体类型,再定义结构体变量 • 一般形式: 例 #define STUDENT struct student STUDENT { int num; char name[20]; char sex; int age; float score; char addr[30]; }; STUDENT stu1,stu2; 例 struct student { int num; char name[20]; char sex; int age; float score; char addr[30]; }; struct student stu1,stu2;
struct 结构体名 { 类型标识符 成员名; 类型标识符 成员名; ……………. }变量名表列; • 定义结构体类型的同时定义结构体变量 一般形式: 例 struct student { int num; char name[20]; char sex; int age; float score; char addr[30]; }stu1,stu2;
直接定义结构体变量 一般形式: struct { 类型标识符 成员名; 类型标识符 成员名; ……………. }变量名表列; 例 struct { int num; char name[20]; char sex; int age; float score; char addr[30]; }stu1,stu2; 用无名结构体直接定义 变量只能一次
例 struct date { int month; int day; int year; }; struct student { int num; char name[20]; struct date birthday; }stu; 例 struct student { int num; char name[20]; struct date { int month; int day; int year; }birthday; }stu; birthday birthday num num name name month month day day year year • 说明 • 结构体类型与结构体变量概念不同 • 类型:不分配内存; 变量:分配内存 • 类型:不能赋值、存取、运算; 变量:可以 • 结构体可嵌套 • 结构体成员名与程序中变量名可相同,不会混淆 • 结构体类型及变量的作用域与生存期
例 struct student { int num; char name[20]; char sex; int age; float score; char addr[30]; }stu1,stu2; 例 struct student { int num; char name[20]; char sex; int age; float score; char addr[30]; }stu1,stu2; stu1.num=10; 例 struct student { int num; char name[20]; struct date { int month; int day; int year; }birthday; }stu1,stu2; 例 struct student { int num; char name[20]; char sex; int age; float score; char addr[30]; }stu1,stu2; stu1.score=85.5; printf(“%d,%s,%c,%d,%f,%s\n”,stu1); () stu1.birthday.month=12; stu1.score+=stu2.score; stu1.age++; stu1={101,“Wan Lin”,‘M’,19,87.5,“DaLian”}; () stu2=stu1; ( ) 例 struct student { int num; char name[20]; char sex; int age; float score; char addr[30]; }stu1,stu2; birthday num name month day year if(stu1==stu2) …….. () 引用方式: 结构体变量名.成员名 • 14.3结构体变量的引用 • 引用规则 • 结构体变量不能整体引用,只能引用变量成员 • 可以将一个结构体变量赋值给另一个结构体变量 • 结构体嵌套时逐级引用 成员(分量)运算符 优先级: 1 结合性:从左向右
struct 结构体名 { 类型标识符 成员名; 类型标识符 成员名; ……………. }; struct 结构体名 结构体变量={初始数据}; • 14.4结构体变量的初始化 • 形式一: 例 struct student { int num; char name[20]; char sex; int age; char addr[30]; }; struct student stu1={112,“Wang Lin”,‘M’,19, “200 Beijing Road”};
形式二: struct 结构体名 { 类型标识符 成员名; 类型标识符 成员名; ……………. }结构体变量={初始数据}; 例 struct student { int num; char name[20]; char sex; int age; char addr[30]; }stu1={112,“Wang Lin”,‘M’,19, “200 Beijing Road”};
形式三: struct { 类型标识符 成员名; 类型标识符 成员名; ……………. }结构体变量={初始数据}; 例 struct { int num; char name[20]; char sex; int age; char addr[30]; }stu1={112,“Wang Lin”,‘M’,19, “200 Beijing Road”};
num num name name 25B stu[0] sex sex age age stu[1] 形式一: struct student { int num; char name[20]; char sex; int age; }; struct student stu[2]; • 14.5结构体数组 • 结构体数组的定义 三种形式: 形式二: struct student { int num; char name[20]; char sex; int age; }stu[2]; 形式三: struct { int num; char name[20]; char sex; int age; }stu[2];
stu[1].age++; 分行初始化: struct student { int num; char name[20]; char sex; int age; }; struct student stu[ ]={{100,“Wang Lin”,‘M’,20}, {101,“Li Gang”,‘M’,19}, {110,“Liu Yan”,‘F’,19}}; struct student { int num; char name[20]; char sex; int age; }str[3]; strcpy(stu[0].name,”ZhaoDa”); 全部初始化时维数可省 • 结构体数组引用 顺序初始化: struct student { int num; char name[20]; char sex; int age; }; struct student stu[ ]={100,“Wang Lin”,‘M’,20, 101,“Li Gang”,‘M’,19, 110,“Liu Yan”,‘F’,19}; 引用方式: 结构体数组名[下标].成员名 例 struct student { int num; char name[20]; char sex; int age; }stu[ ]={{……},{……},{……}}; • 结构体数组初始化 例 struct { int num; char name[20]; char sex; int age; }stu[ ]={{……},{……},{……}};
name count 0 Li 0 Zhang 0 Wang 例 统计候选人选票 struct person { char name[20]; int count; }leader[3]={“Li”,0,“Zhang”,0,”Wang“,0}; main() { int i,j; char leader_name[20]; for(i=1;i<=10;i++) { scanf("%s",leader_name); for(j=0;j<3;j++) if(strcmp(leader_name,leader[j].name)==0) leader[j].count++; } for(i=0;i<3;i++) printf("%5s:%d\n",leader[i].name,leader[i].count); }
(*结构体指针名).成员名 结构体指针名->成员名 结构体变量名.成员名 p num name struct student { int num; char name[20]; char sex; int age; }stu; struct student *p=&stu; stu sex age main() { struct student { long int num; char name[20]; char sex; float score; }stu_1,*p; p=&stu_1; stu_1.num=89101; strcpy(stu_1.name,"Li Lin"); p->sex='M'; p->score=89.5; printf("\nNo:%ld\nname:%s\nsex:%c\nscore:%f\n", (*p).num,p->name,stu_1.sex,p->score); } • 14.6结构体和指针 • 指向结构体变量的指针 • 定义形式:struct 结构体名 *结构体指针名; 例 struct student *p; • 使用结构体指针变量引用成员形式 存放结构体变量在内存的起始地址 例 int n; int *p=&n; *p=10; n=10 struct student stu1; struct student *p=&stu1; stu1.num=101; (*p).num=101 例 指向结构体的指针变量 指向运算符 优先级: 1 结合方向:从左向右
p num name stu[0] sex age p+1 stu[1] stu[2] 例 指向结构体数组的指针 struct student { int num; char name[20]; char sex; int age; }stu[3]={{10101,"Li Lin",'M',18}, {10102,"Zhang Fun",'M',19}, {10104,"Wang Min",'F',20}}; main() { struct student *p; for(p=stu;p<stu+3;p++) printf("%d%s%c%d\n",p->num,p->name,p->sex,p->age); } • 指向结构体数组的指针
用指向结构体的指针作函数参数 • 用结构体变量的成员作参数----值传递 • 用指向结构体变量或数组的指针作参数----地址传递 • 用结构体变量作参数----多值传递,效率低
(main) (main) (main) a :27 a :27 a :27 a :27 a :18 a :27 arg arg arg b: 3 b: 3 b: 3 b: 5 b: 3 b: 3 (main) c :30 c :30 c :30 c :30 c :30 c :90 arg (func) (func) parm parm 例 用结构体变量作函数参数 struct data { int a, b, c; }; main() { void func(struct data); struct data arg; arg.a=27; arg.b=3; arg.c=arg.a+arg.b; printf("arg.a=%d arg.b=%d arg.c=%d\n",arg.a,arg.b,arg.c); printf("Call Func()....\n"); func(arg); printf("arg.a=%d arg.b=%d arg.c=%d\n",arg.a,arg.b,arg.c); } void func(struct data parm) { printf("parm.a=%d parm.b=%d parm.c=%d\n",parm.a,parm.b,parm.c); printf("Process...\n"); parm.a=18; parm.b=5; parm.c=parm.a*parm.b; printf("parm.a=%d parm.b=%d parm.c=%d\n",parm.a,parm.b,parm.c); printf("Return...\n"); } copy
(main) (main) (main) a :27 a :18 a :18 a :27 (func) (func) arg arg arg b: 5 b: 3 b: 3 b: 5 (main) parm parm **** **** c :30 c :90 c :30 c :90 arg 例 用结构体指针变量作函数参数 struct data { int a, b, c; }; main() { void func(struct data *parm); struct data arg; arg.a=27; arg.b=3; arg.c=arg.a+arg.b; printf("arg.a=%d arg.b=%d arg.c=%d\n",arg.a,arg.b,arg.c); printf("Call Func()....\n"); func(&arg); printf("arg.a=%d arg.b=%d arg.c=%d\n",arg.a,arg.b,arg.c); } void func(struct data *parm) { printf("parm->a=%d parm->b=%d parm->c=%d\n",parm->a,parm->b,parm->c); printf("Process...\n"); parm->a=18; parm->b=5; parm->c=parm->a*parm->b; printf("parm->a=%d parm->b=%d parm->c=%d\n",parm->a,parm->b,parm->c); printf("Return...\n"); }
head 头指针 头结点 • 14.7利用结构体变量构成链表 • 链表是一种常用的、能够实现动态存储分配的数据结构类型。 • 用途:处理动态存储分配的批量数据 • 单向链表 • 头指针变量head──指向链表的首结点。 • 每个结点由2个域组成:数据域──存储结点本身的信息;指针域──指向后继结点的指针。 • 尾结点的指针域置为“NULL(空)”,作为链表结束的标志。 例 struct grade { char no[7]; /*学号*/ int score; /*成绩*/ struct grade *next; /*指针域*/ };
单向链表的建立 操作步骤:(1)读取数据 (2)生成新结点 (3)将数据存入结点的成员变量中 (4)将新结点插入到链表中。 举例:编写函数creat_slist,建立如前页图中所示的带有头接点的单向链表。结点数据域中的数值从键盘输入,以-1作为输入结束标志。 程序见下页: 在程序中定义了有三个指针变量h、s和r。 h用于存放头结点的地址; S用来指向新生成的结点; r总是指向链表当前的尾结点。
例 typedef struct slist {int data; struct slist *next; }SLIST; SLIST *creat_slist1() {int c; SLIST *h,*s,*r; h=(SLIST *)malloc(sizeof(SLIST)); r=h; scanf (“%d”,&c); while(c!=-1) { s=(SLIST*)malloc(sizeof(SLIST)); s->data=c; r->next=s; r = s; scanf (“%d”,&c); } r->next=‘\0’; return h ; } main() { SLIST *head; head=creat_slist1(); . . . }
单向链表的输出 void print_slist(SLIST *head) {SLIST *p; p=head->next; if(p==‘\0’) printf(“Linklist is null!\n”); else { printf (“head”); do {printf(“->%d”,p->data); p=p->next; } while(p!=‘\0’); printf(“->end\n”); } }
在单向链表中插入结点 在值为x的结点前,插入值为y的结点。 分析:(1)链表非空,值为x的结点存在,新结点插在该结点之前 (2)链表非空,值为x的结点不存在,新结点插在表尾 (3)链表为空表,新结点插在表尾 insert_snode (SLIST *head, int x, int y) {SLIST *s,*p,*q; s=(SLIST *)malloc(sizeof(SLIST)); s->data=y; q=head; p=head->next; while((p!=‘\0’)&&(p->data!=x)) {q=p; p=p->next;} s->next=p; q->next=s; }
q p head 头指针 头结点 • 删除单向链表中的结点 要删除单向链表中的某个结点,首先要找到等删结点的前趋结点;然后将此前趋结点的指针去指向待删结点的后继结点;最后释放被删结点所占存储空间即可。
i ch f • 14.8共用体 • 构造数据类型,也叫联合体 • 用途:使几个不同类型的变量共占一段内存(相互覆盖) • 共用体类型定义 定义形式: union 共用体名 { 类型标识符 成员名; 类型标识符 成员名; ……………. }; 例 union data { int i; char ch; float f; }; 类型定义不分配内存
i i ch ch f f a b • 共用体变量的定义 形式一: union data { int i; char ch; float f; }a,b; 形式二: union data { int i; char ch; float f; }; union data a,b,c,*p,d[3]; 形式三: union { int i; char ch; float f; }a,b,c; 共用体变量任何时刻 只有一个成员存在 共用体变量定义分配内存, 长度=最长成员所占字节数
共用体变量名.成员名 共用体指针名->成员名 (*共用体指针名).成员名 union data { int i; char ch; float f; }; union data a,b,c,*p,d[3]; a.i a.ch a.f p->i p->ch p->f (*p).i (*p).ch (*p).f d[0].i d[0].ch d[0].f • 共用体变量引用 • 引用方式: • 引用规则 • 不能引用共用体变量,只能引用其成员 • 共用体变量中起作用的成员是最后一次存放的成员 例 union { int i; char ch; float f; }a; a=1; () • 不能在定义共用体变量时初始化 例 a.i=1; a.ch=‘a’; a.f=1.5; printf(“%d”,a.i); (编译通过,运行结果不对) • 可以用一个共用体变量为另一个变量赋值 例 union { int i; char ch; float f; }a={1,’a’,1.5}; () 例 float x; union { int i; char ch; float f; }a,b; a.i=1; a.ch=‘a’; a.f=1.5; b=a; () x=a.f; ()
高字节 低字节 01100001 01000001 ch[0] 01000001 ch[1] 01100001 例 将一个整数按字节输出 main() { union int_char { int i; char ch[2]; }x; x.i=24897; printf("i=%o\n",x.i); printf("ch0=%o,ch1=%o\n ch0=%c,ch1=%c\n", x.ch[0],x.ch[1],x.ch[0],x.ch[1]); } 运行结果: i=60501 ch0=101,ch1=141 ch0=A,ch1=a
变量的各成员同时存在 struct node { char ch[2]; int k; }a; ch a k ch b k union node { char ch[2]; int k; }b; 任一时刻只有一个成员存在 • 结构体与共用体 • 区别: 存储方式不同 • 联系: 两者可相互嵌套
int a,b,c; float f1,f2; • 14.9用typedef定义类型 • 功能:用自定义名字为已有数据类型命名 • 类型定义简单形式: typedef type name; 例 INTEGER a,b,c; REAL f1,f2; 例 typedef int INTEGER; 用户定义的类型名 已有数据类型名 类型定义语句关键字 例 typedef float REAL; 类型定义后,与已有类型一样使用 说明: 1.typedef 没有创造新数据类型 2.typedef 是定义类型,不能定义变量 3.typedef 与 define 不同 definetypedef 预编译时处理编译时处理 简单字符置换 为已有类型命名
typedef定义类型步骤 • 按定义变量方法先写出定义体 如 int i; • 将变量名换成新类型名 如 int INTEGER; • 最前面加typedef 如 typedef int INTEGER; • 用新类型名定义变量 如 INTEGER i,j; 例 定义数组类型 • int a[100]; • int ARRAY[100]; • typedef int ARRAY[100]; • ARRAY a,b,c; 例 定义指针类型 • char *str; • char *STRING; • typedef char *STRING; • STRING p,s[10]; char *p; char *s[10]; int a[100],b[100],c[100];
枚 举(enum) 枚举是一个被命名的整型常数的集合, 枚举在日常生活中很常见。 例如表示星期的SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, 就是一个枚举。 枚举的说明与结构和联合相似, 其形式为: enum 枚举名{ 标识符[=整型常数], 标识符[=整型常数], ... 标识符[=整型常数], } 枚举变量; 如果枚举没有初始化, 即省掉"=整型常数"时, 则从第一个标识符开始, 顺次赋给标识符0, 1, 2, ...。但当枚举中的某个成员赋值后, 其后的成员按依次加1的规则确定其值。
例如:下列枚举说明后, x1, x2, x3, x4的值分别为0, 1, 2, 3。 enum string{x1, x2, x3, x4}x; 当定义改变成: enum string { x1, x2=0, x3=50, x4, }x; 则x1=0, x2=0, x3=50, x4=51
注意: 1. 枚举中每个成员(标识符)结束符是",", 不是";", 最后一个成员可省略","。 2. 初始化时可以赋负数, 以后的标识符仍依次加1。 3. 枚举变量只能取枚举说明结构中的某个标识符常量。 例如: enum string { x1=5, x2, x3, x4, }; enum strig x=x3; 此时, 枚举变量x实际上是7。