270 likes | 292 Views
This lecture by Jiacheng Cheng on Feb 21, 2018, explains defining and implementing CNNs on surfaces using seamless toric covers. It covers problem statements, translations, surfaces, mappings, layers, data generation, human body segmentation, and biological landmark detection. The lecture concludes with a discussion on limitations and future work.
E N D
Lecture 14: Convolutional Neural Networks on Surfaces via Seamless Toric Covers Jiacheng Cheng Feb, 21, 2018
1 Convolutional neural networkson surfacesviaseamlesstoriccovers HaggaiMaron,MeiravGalun,NoamAigerman,MiriTrope,NadavDym,ErsinYumer, Vladimir G. Kim, YaronLipman
Problemstatement Easy Hard
DeepLearning Geometric Deep Learning
Translations • Two dimensional,commutative Isometries ofR^2 • Convolution • Linear • Translationinvariant • Pooling • Non-linear(max) • Sub-translation invariant
Translations onsurfaces? • Translationonsurface≝locallyEuclideantranslation • Flowalongnon-vanishingvectorfields
Flat torus! • Translations “modulo1” • Full translation invariance on the flattorus !
Only thetorus! Index of vectorfield Euler characteristic • Poincaré-Hopf:Foracompactorientablesurface • Index–ameasureofthecomplexitynearavanishingpoint • Non-vanishingvectorfieldimpliesgenus1-torus
15 CNNonflattorus Cyclic padding
16 Recap • CNNiswell-definedoverflat-torus • RoadblocksforCNNonsphere-typesurfaces • Topological:NolocallyEuclideantranslationsonspheres • Geometrical:Theflattorusisflatandoursurfaceisnot
17 Solution: Map the surface to a flattorus
19 MappingtheTorustotheflatTorus ! Aigerman and Lipman,2015
22 Pull-back Translations: pull-back Euclideantranslations Two dimensional,commutative Conformalmaps ! Pull-backconvolution Linear Theorem: Translationinvariance Pull-backpooling Non-linear(max) Sub-translationinvariant
24 Newlayers projection cyclicpadding
Datageneration Inputimage Labels
26 Testphase • Aggregation from differenttriplets • “Magnifyingglass” • Scale factor asweights • + + + =
27 Human bodysegmentation Train: 370models FAUST, MIT, SCAPE,ADOBE Test: 18models SHREC07
Easyfunctions Raw • Normals • Average geodesicdistance • Wave kernelsignature Complex
Human bodysegmentation Train: 370models FAUST, MIT, SCAPE,ADOBE Test: 18models SHREC07
Biological landmarksdetection • Train: 73teeth from BOYER • Onlycurvatureandscalefactor Test: 8 teeth fromBOYER
32 Biologicallandmarks
35 Conclusion • CNN of sphere-typesurfaces • Wedefinedameaningfulconvolutiononsurfaces • Learns from rawfeatures • ReusingCNNsoftwareforimages • Limitationsandfuturework • Scope:Onlyspheretypesurfaces • Nocanonicalchoicefortriplets(andconvolutions) • Learn aggregationoperator