510 likes | 1.37k Views
CRRT Protocol Continuous Renal Replacement Therapy. 台大外科部 護理師 蔡壁如. Outline. History Indication CRRT Method Ultrafiltration rates Choice of replacement fluid Set-up protocol. History. 1861 Thomas Graham, etc. use a semi-permeable membrane to diffuse urea
E N D
CRRT ProtocolContinuous Renal Replacement Therapy 台大外科部 護理師 蔡壁如
Outline • History • Indication • CRRT Method • Ultrafiltration rates • Choice of replacement fluid • Set-up protocol
History • 1861 Thomas Graham, etc. use a semi-permeable membrane to diffuse urea • 1924 George Haas dialyse a patient during 15 minutes • 1927 Heparin,an anticoagulant, is available • 1937 Production of cellophane for filters • 1943 Willem Kolff makes a rotating drum dialyser • 1970 First artificial membrane • 1975-1985 Development of new techniques, i.e. adsorption, plasma exchange, filtration …
Extracorporeal depuration in ICU • 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) • 1982 : FDA approves the CAVH • 1984 : Blood pump circulated remove fluid • 1994 : Clinical importance to control fluid balance • 1994 The first « automatic » machine is available • 2000 : higher flows machines becomes available
Extracorporeal depuration in ICU • 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) • 1982 : FDA approves the CAVH • 1984 : Blood pump circulated remove fluid • 1994 : Clinical importance to control fluid balance • 1994 The first « automatic » machine is available • 2000 : higher flows machines becomes available
Extracorporeal depuration in ICU • 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) • 1982 : FDA approves the CAVH • 1984 : Blood pump circulated remove fluid • 1994 : Clinical importance to control fluid balance • 1994 The first « automatic » machine is available • 2000 : higher flows machines becomes available
Extracorporeal depuration in ICU • 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) • 1982 : FDA approves the CAVH • 1984 : Blood pump circulated remove fluid • 1994 : Clinical importance to control fluid balance • 1994 The first « automatic » machine is available • 2000 : higher flows machines becomes available
Objectives of extracorporeal depuration in the Intensive Care Units (ICU) • With acute renal failure (ARF) • function to control patient fluid, acid-base balances • to correct electrolytic disorders • to remove urea and creatinine • to maintain sufficient nutrition • to preserve the potential to recover renal • Without acute renal failure • to reduce the fluid overload to improve cardiac and brain status • to remove lactate of major lactic acidosis
C.R.R.T. 適應症 • 1. 急性腎衰竭 • 2. 急性肺水腫 • 3. 在心臟手術進行期間,避免過量鉀及水份 (利用體外血液循環系統) • 4. 嚴重性水腫如;心臟衰竭 (Congestive cardiac failure ), 腎病綜合症 ( Nephrotic syndrome ) • 5. 急性呼吸道病症 ( ARDS ) • 6. 藥物中毒 • 7. 嚴重乳酸鹽中毒 • 8. 敗血病休克 ( Septic shock ) : 清除Cytokines和 Endotoxin • 9. 體溫過高/發熱 (Hyperthermia ) • 10.橫紋肌溶解 ( Rhabdomyolisis ) • 11. 急性溶血
急性腎衰竭治療的終極目標 • 清除血液中的廢物 • 回復身體的酸鹼平衡 • 改正體內電解質不正常情況,特別是血鉀過高 • 免除體液過量,較高的體液清除能力,不能對心血管有太大的壓抑 • 確保營養支持
FILTER Fresh dialysate Hemodialysis Arterial flow Venous flow anticoagulant Blood flow : 200 ~ 250ml/min Dialysate flow : 500 ml/min Duration : 4h Weight loss : 2 ~ 4 L
Hemofiltration Hemofiltration = filtration through a strainer substitution blood Filter including a semi-permeable membrane ultrafiltrate
What is renal replacement method of first choice for intensive care patients? • IHD ( Intermittent hemodialysis ) • CRRT ( Continuous renal replacement therapy ) • SLEDD ( Slow Low-efficient Daily Dialysis ) Journal of the American Society of Nephrology, 2001
IHD compared with CRRT Journal of the American Society of Nephrology, 2001
Theoretical Advantage of CRRT • Hemodynamic Stability • Recovery of renal function • Correction of metabolic acidosis • Biocompatibility • Correction of malnutrition • Better removal of cytokines • Solute removal • Overall outcomes Journal of the American Society of Nephrology, 2001
Disadvantage of CRRT • Continuous anticoagulation • Patient immobility • Intensive nursing requirements • Increased expense Journal of the American Society of Nephrology, 2001
SLEDD ( Slow Low-efficient Daily Dialysis ) • Fresenius 2008H delivery system • Toray model 2.0 dialyzer • Double lumen • Duration : 6 ~ 8 hrs • Blood flow : 200 ml/min • Dialysate flow rate : 300 ml/min • Dialysate bicarbonate concentration : 30 ~ 35meq/L American Journal of Kidney Disease, 2000
Low blood flow Low dialysate flow rates Prolong period of time ( 6 ~ 12hrs) Compared with IHD Hemodynamic stability Better correction of hypervolemia Adequate solute removal Cost lower than CRRT SLEDD as an Alternative Journal of the American Society of Nephrology, 2001
Advantage of SLEDD • Less cumbersome technique • Patient mobility • Decreased requirements for anticoagulation • Providing similar hemodynamic stability and volume control American Journal of Kidney Disease, 2000
CVVHD • P/D Solution : Dialysate solution • 35 ~ 45% infused dextrose absorbed through the hemodiafilter • Glucose delivery 5.8 g/hr (P/D 1.5%, rate 1L/hr) • Impact nitrogen and carbohydrate balance Intensive Care Med. 1991, 1995
P/D solution dialysate ultrafiltration Blood Flow, 200 ml/min CVVHDContinuous Veno-Venous hemodiafiltration V
CVVHD • Glucose dynamics during continuous hemodiafiltration • Lipogenesis in the liver • Excessive carbon dioxide production • MV (minute ventilation) • Hyperglycemia • Preventing glucose overload • Dextrose free dialysate • Glucose load from dialysate • Conclusion • Dextrose free : loss is small and predictable Intensive Care Med. 1995
Ultrafiltration rates ? • Recommend 2L per hour or more • 20 ml/hr/kg : 41% (survival rate) • 35ml/hr/kg : 57% • 45ml/hr/kg : 58% • High treatment doses might be difficult • Early start of treatment : improved outcome Lancet 2000;355:26-30
Early and Intensive Continuous Hemofiltration for severe renal failure after cardiac surgery • Early: 2.8 days post-op • Too late in the post-op • Leading prolonged and poorly controlled uremia • Restricted nutrition • Volume overload • Intensive: 2 L/hr urtrafiltration rate • Limited intensity leading to inferior uremic control with its attendant sequel • Actual mortality : 40% vs 66% Ann Thorac Surg 2001
Predilution anticoagulant Postdilution Arterial flow Venous flow FILTRE Hemofiltration withpredilution or postdilution Predilution : Injection before the filter Postdilution : Injection after the filter ultrafiltrate
Double lumen : Re-circulation rate 250cc/min blood flow • Subclavian , internal jugular vein < 3% • Catheter length • Femoral vein 24cm : 10% 15cm : 18% 400 c.c/min blood flow • 38% in the femoral vein American Journal of Kidney disease , 1996
Double lumen : Re-circulation rate 298 c.c/min blood flow • Femoral vs Subclavian : 16.1% vs 4.1% • Femoral cath 13.5 cm vs 19.5 cm : 22.8 ±3.0% vs12.6 ±1.7% American Journal of Kidney disease, 1996
Choice of replacement fluid • Acetate-Based fluids • Hyperacetatemiaperipheral vasodilator, myocardial depressant effect • Acetate metabolism oxygen consumption • Bicarbonate-Based fluid • SVR, CI • Lactate-Based fluid • lactate : protein catabolism • ADP level and impair oxygen delivery and ventricular function (myocardial depression) • Excessive accumulation of D-lactate IICP American Journal of Kidney disease, 1996
Effects of bicarbonate and lactate-buffered replacement fluids on cardiovascular outcome in CRRT patients • Bicarbonate Replacement Fluid : recommended in patients with lactic acidemia and severe liver failure • Improve cardiovascular outcome in critically ill patients with acute renal failure • International Society of Nephrology 2000
Anticoagulation • Heparin free : flush 50 ~ 100 cc N/S Q1h • Citrate • Heparin : PTT 45 ~ 65 sec
SICU CVVH Protocol • Double : R’t Jugular > Femoral • Blood Flow : 150 ~ 200 c.c/min • UF rate : 1L/hr ~ 2L/hr 視病患而定 • Blood Flow : 150 c.c /min 1L/hr • Blood Flow : 200 c.c /min 2L/hr • Replacement Fluid : 視脫水多少而定
主機 加熱袋 Blood flow Power Roller pump
CRRT 圖解分析 vein artery Blood flow Blood pump B C D A A,B solution接頭 Air chamber 接IV set