1 / 26

CAS Seminar on Ratemaking Las Vegas, Nevada March 11-13, 2001

CAS Seminar on Ratemaking Las Vegas, Nevada March 11-13, 2001. Fitting to Loss Distributions with Emphasis on Rating Variables Farrokh Guiahi, Ph.D., F.C.A.S, A.S.A.

noreen
Download Presentation

CAS Seminar on Ratemaking Las Vegas, Nevada March 11-13, 2001

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CAS Seminar on RatemakingLas Vegas, NevadaMarch 11-13, 2001 Fitting to Loss Distributions with Emphasis on Rating Variables Farrokh Guiahi, Ph.D., F.C.A.S, A.S.A. 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  2. Fitting distributions to insurance data serves an important function for the purpose of pricing insurance products.The effect of the rating variables upon loss distributions has important implications for underwriting selection.It also provides for a more differentiated rating system. Why? 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  3. Data MethodologyKnowledge/Experience of “Curve Fitter”Time Purpose Process of fitting distributions to losses: 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  4. Data – Situation 1# Loss 1 112 2 107 3 100,000 4 5,000,000 5 430 6 4,500 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  5. Ask questions about the data: Losses in excess of deductible? Losses capped by policy limit? etc. Insurance Data are usually “Incomplete” Left truncated Right Censored Data – Situation 1 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  6. Policy# Deductible Limit Loss1 0 100,000 1122 100,000 10,000,000 117 3 0 100,000 100,0004 1,000 5,000,000 5,000,0005 0 250,000 4306 10,000 1,000,000 4,500 Data – Situation 2 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  7. “The” distribution!Ranking alternative distributionsAn“overall” measure of fitAkaike’s Information Criterion, AIC AIC = - 2 (maximized log-likelihood) + 2 (number of parameters estimated) Selection of a parametric distribution 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  8. Incomplete data Proper specification of the LikelihoodFunction for data that is “Incomplete” Maximum Likelihood Estimation, MLE Estimation of Model Parameters 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  9. yi : ith loss amount (incurred value) Di : deductible for the ith lossPLi : policy limit for the ith lossf(yi ;,): density function  : primary parameter of interest: nuisance parameter F(yi ;,): cumulative distribution function Notations 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  10. Case 1: No deductible, and loss below policy limit (neither left truncated nor right censored data) The complete sample case. 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  11. Case 2:A deductible, and loss below policy limit (left truncated data) 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  12. Case 3:No deductible, and loss capped by policy limit (right censored data) 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  13. Case 4:A deductible, and loss capped by policy limit (left truncated and right censored data) 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  14. Likelihood Function 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  15. Iterative solution, “Solver” Initial Parameter Values Convergence Uniqueness Robustness Maximum Likelihood Estimation 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  16. Incorporating rating variables into fitting process Data – Situation 3 Policy # Deduct. Limit Loss Constr. Prot. Occupancy 1 0 100,000 112 1 2 23 2 100,000 10M 117 2 1 33 3 0 100,000 100,000 1 6 16 4 1,000 5M 5M 3 3 8 5 0 250,000 430 1 4 70 6 10,000 1M 4,500 2 2 40 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  17. Incorporating rating variables into fitting process Approaches: Subdividing data Using all of data to estimate model parameters simultaneously. 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  18. Relating rating variables to a parameter of the selected loss distribution Rating variables: Quantitative Qualitative Generalized Linear Modeling 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  19. An example: Commercial Loss Fire Data Rating variables: Construction Building Value -- Exposure 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  20. Linear Predictors4 linear predictors; 4 statistical models: A, B, C, D 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  21. 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  22. Estimation of parameters: Lognormal:  and  From:  and  to beta_0, beta-1, beta_2, beta_3 &  2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  23. Assessing the effect of Rating Variables Nested models 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  24. Nested Hypotheses based on Model D Test of Hypothesis 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  25. mydata<-TableA m<-data.frame(mydata) lognormal.model.D <- function(b0,b1,b2,b3,sigma, data=data.matrix) { D <- data.matrix[,1] PL <- data.matrix[,2] y <- data.matrix[,3] z <- D+(y*(y<PL)+PL*(y>=PL)) cnst <- data.matrix[,4] C1 <- cnst == 1 C2 <- cnst == 2 d <-D+(D == 0)*1 mu <- b0+b1*log(PL)+b2*C1+b3*C2 Appendix B - Exhibit 2A 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

  26. delta1 <- (D == 0)*(y < PL) delta2 <- (D > 0)*(y < PL) delta3 <- (D == 0)*(y >= PL) delta4 <- (D > 0)*(y >= PL) L1 <- dlnorm(z,mu,sigma) L2 <- dlnorm(z,mu,sigma)/(1-plnorm(d,mu,sigma)) L3 <- 1-plnorm(z,mu,sigma) L4 <- (1-plnorm(z,mu,sigma))/(1-plnorm(d,mu,sigma)) logL <-delta1*log(L1)+delta2*log(L2)+delta3*log(L3)+delta4*log(L4) -logL }min.model.D<-ms(~lognormal.model.D(b0,b1,b2,b3,sigma), data=m, start=list(b0=4.568, b1=0.238, b2=1.068, b3=0.0403, sigma=1.322))min.model.Dvalue: 892.7099 parameters: b0 b1 b2 b3 sigma 1.715296 0.3317345 2.154994 0.4105021 1.898501formula: ~ lognormal.model.D(b0, b1, b2, b3, sigma) 100 observationscall: ms(formula = ~ lognormal.model.D(b0, b1, b2, b3, sigma), data=m, start =list(b0=4.568, b1=0.238, b2=1.068, b3=0.0403, sigma=1.322)) Appendix B - Exhibit 2B 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada

More Related