260 likes | 407 Views
CAS Seminar on Ratemaking Las Vegas, Nevada March 11-13, 2001. Fitting to Loss Distributions with Emphasis on Rating Variables Farrokh Guiahi, Ph.D., F.C.A.S, A.S.A.
E N D
CAS Seminar on RatemakingLas Vegas, NevadaMarch 11-13, 2001 Fitting to Loss Distributions with Emphasis on Rating Variables Farrokh Guiahi, Ph.D., F.C.A.S, A.S.A. 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Fitting distributions to insurance data serves an important function for the purpose of pricing insurance products.The effect of the rating variables upon loss distributions has important implications for underwriting selection.It also provides for a more differentiated rating system. Why? 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Data MethodologyKnowledge/Experience of “Curve Fitter”Time Purpose Process of fitting distributions to losses: 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Data – Situation 1# Loss 1 112 2 107 3 100,000 4 5,000,000 5 430 6 4,500 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Ask questions about the data: Losses in excess of deductible? Losses capped by policy limit? etc. Insurance Data are usually “Incomplete” Left truncated Right Censored Data – Situation 1 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Policy# Deductible Limit Loss1 0 100,000 1122 100,000 10,000,000 117 3 0 100,000 100,0004 1,000 5,000,000 5,000,0005 0 250,000 4306 10,000 1,000,000 4,500 Data – Situation 2 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
“The” distribution!Ranking alternative distributionsAn“overall” measure of fitAkaike’s Information Criterion, AIC AIC = - 2 (maximized log-likelihood) + 2 (number of parameters estimated) Selection of a parametric distribution 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Incomplete data Proper specification of the LikelihoodFunction for data that is “Incomplete” Maximum Likelihood Estimation, MLE Estimation of Model Parameters 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
yi : ith loss amount (incurred value) Di : deductible for the ith lossPLi : policy limit for the ith lossf(yi ;,): density function : primary parameter of interest: nuisance parameter F(yi ;,): cumulative distribution function Notations 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Case 1: No deductible, and loss below policy limit (neither left truncated nor right censored data) The complete sample case. 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Case 2:A deductible, and loss below policy limit (left truncated data) 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Case 3:No deductible, and loss capped by policy limit (right censored data) 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Case 4:A deductible, and loss capped by policy limit (left truncated and right censored data) 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Likelihood Function 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Iterative solution, “Solver” Initial Parameter Values Convergence Uniqueness Robustness Maximum Likelihood Estimation 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Incorporating rating variables into fitting process Data – Situation 3 Policy # Deduct. Limit Loss Constr. Prot. Occupancy 1 0 100,000 112 1 2 23 2 100,000 10M 117 2 1 33 3 0 100,000 100,000 1 6 16 4 1,000 5M 5M 3 3 8 5 0 250,000 430 1 4 70 6 10,000 1M 4,500 2 2 40 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Incorporating rating variables into fitting process Approaches: Subdividing data Using all of data to estimate model parameters simultaneously. 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Relating rating variables to a parameter of the selected loss distribution Rating variables: Quantitative Qualitative Generalized Linear Modeling 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
An example: Commercial Loss Fire Data Rating variables: Construction Building Value -- Exposure 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Linear Predictors4 linear predictors; 4 statistical models: A, B, C, D 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Estimation of parameters: Lognormal: and From: and to beta_0, beta-1, beta_2, beta_3 & 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Assessing the effect of Rating Variables Nested models 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
Nested Hypotheses based on Model D Test of Hypothesis 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
mydata<-TableA m<-data.frame(mydata) lognormal.model.D <- function(b0,b1,b2,b3,sigma, data=data.matrix) { D <- data.matrix[,1] PL <- data.matrix[,2] y <- data.matrix[,3] z <- D+(y*(y<PL)+PL*(y>=PL)) cnst <- data.matrix[,4] C1 <- cnst == 1 C2 <- cnst == 2 d <-D+(D == 0)*1 mu <- b0+b1*log(PL)+b2*C1+b3*C2 Appendix B - Exhibit 2A 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada
delta1 <- (D == 0)*(y < PL) delta2 <- (D > 0)*(y < PL) delta3 <- (D == 0)*(y >= PL) delta4 <- (D > 0)*(y >= PL) L1 <- dlnorm(z,mu,sigma) L2 <- dlnorm(z,mu,sigma)/(1-plnorm(d,mu,sigma)) L3 <- 1-plnorm(z,mu,sigma) L4 <- (1-plnorm(z,mu,sigma))/(1-plnorm(d,mu,sigma)) logL <-delta1*log(L1)+delta2*log(L2)+delta3*log(L3)+delta4*log(L4) -logL }min.model.D<-ms(~lognormal.model.D(b0,b1,b2,b3,sigma), data=m, start=list(b0=4.568, b1=0.238, b2=1.068, b3=0.0403, sigma=1.322))min.model.Dvalue: 892.7099 parameters: b0 b1 b2 b3 sigma 1.715296 0.3317345 2.154994 0.4105021 1.898501formula: ~ lognormal.model.D(b0, b1, b2, b3, sigma) 100 observationscall: ms(formula = ~ lognormal.model.D(b0, b1, b2, b3, sigma), data=m, start =list(b0=4.568, b1=0.238, b2=1.068, b3=0.0403, sigma=1.322)) Appendix B - Exhibit 2B 2001 CAS Seminar on Ratemaking - Las Vegas, Nevada