200 likes | 400 Views
Geometrical optimization of a disc brake. Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu. Presentation Overview. Optimization Overview Disc Brake Analysis Response Surface Optimization. Design process.
E N D
Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu
Presentation Overview • Optimization Overview • Disc Brake Analysis • Response Surface Optimization
Design process • Functional requirements • Initial design • Topologic optimization • Parametric optimization
Problem statement objective function state variables bounded domain Given geometry Given parameters
Example problem • Variables ? Minimize displacement Bounded volume Bounded stress
Parametric optimization • X = thickness of each portion • 5 Variables Minimize displacement Bounded volume Bounded stress
Topologic optimization • X = presence of each cell • 27 variables Minimize displacement Bounded volume Bounded stress
Parametric with interpolation • X = position of each point • 8 variables Minimize displacement Bounded volume Maximum stress • We use this one!
ANSYS Modeling (Reference) 0.28 MPa Linear Elastic, Isotropic 80mm 60mm Symmetry
ANSYS Modeling (Optimization) Min total displacement BC & symmetry 0.28 MPa Linear Elastic, Isotropic 80mm 60mm X 1 X 2 Symmetry
Ansys Results : Deflection 9.2% Reduction mm mm Optimized Reference
Ansys Results : not exceeded 8.35% Reduction MPa MPa Optimized Reference
Response Surface Optimization Displacement X 2 X 1
Objective Function Formulation Penalty functions for state variables Optimization parameter Penalty functions for design variables Traditional Method ANSYS
Design of Experiments Angle 1 Angle 2
Kriging Algorithm Displacement x2 x1
MISQPMixed Integer Sequential Quadratic Programming Displacement Angle 2 Angle 1
Candidate Point Validation Displacement Angle 2 Angle 1