1 / 24

CS 332: Algorithms

CS 332: Algorithms. Data Structures For Dynamic Sets Binary Search Trees. Dynamic Sets. Next few lectures will focus on data structures rather than straight algorithms In particular, structures for dynamic sets Elements have a key and satellite data

norina
Download Presentation

CS 332: Algorithms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS 332: Algorithms Data Structures For Dynamic SetsBinary Search Trees David Luebke 110/2/2014

  2. Dynamic Sets • Next few lectures will focus on data structures rather than straight algorithms • In particular, structures for dynamic sets • Elements have a key and satellite data • Dynamic sets support queries such as: • Search(S, k), Minimum(S), Maximum(S), Successor(S, x), Predecessor(S, x) • They may also support modifying operationslike: • Insert(S, x), Delete(S, x) David Luebke 210/2/2014

  3. Binary Search Trees • Binary Search Trees (BSTs) are an important data structure for dynamic sets • In addition to satellite data, eleements have: • key: an identifying field inducing a total ordering • left: pointer to a left child (may be NULL) • right: pointer to a right child (may be NULL) • p: pointer to a parent node (NULL for root) David Luebke 310/2/2014

  4. F B H A D K Binary Search Trees • BST property: key[left(x)]  key[x]  key[right(x)] • Example: David Luebke 410/2/2014

  5. Inorder Tree Walk • What does the following code do? TreeWalk(x) TreeWalk(left[x]); print(x); TreeWalk(right[x]); • A: prints elements in sorted (increasing) order • This is called an inorder tree walk • Preorder tree walk: print root, then left, then right • Postorder tree walk: print left, then right, then root David Luebke 510/2/2014

  6. F B H A D K Inorder Tree Walk • Example: • How long will a tree walk take? • Prove that inorder walk prints in monotonically increasing order David Luebke 610/2/2014

  7. Operations on BSTs: Search • Given a key and a pointer to a node, returns an element with that key or NULL: TreeSearch(x, k) if (x = NULL or k = key[x]) return x; if (k < key[x]) return TreeSearch(left[x], k); else return TreeSearch(right[x], k); David Luebke 710/2/2014

  8. F B H A D K BST Search: Example • Search for D and C: David Luebke 810/2/2014

  9. Operations on BSTs: Search • Here’s another function that does the same: TreeSearch(x, k) while (x != NULL and k != key[x]) if (k < key[x]) x = left[x]; else x = right[x]; return x; • Which of these two functions is more efficient? David Luebke 910/2/2014

  10. Operations of BSTs: Insert • Adds an element x to the tree so that the binary search tree property continues to hold • The basic algorithm • Like the search procedure above • Insert x in place of NULL • Use a “trailing pointer” to keep track of where you came from (like inserting into singly linked list) David Luebke 1010/2/2014

  11. F B H A D K BST Insert: Example • Example: Insert C C David Luebke 1110/2/2014

  12. BST Search/Insert: Running Time • What is the running time of TreeSearch() or TreeInsert()? • A: O(h), where h = height of tree • What is the height of a binary search tree? • A: worst case: h = O(n) when tree is just a linear string of left or right children • We’ll keep all analysis in terms of h for now • Later we’ll see how to maintain h = O(lg n) David Luebke 1210/2/2014

  13. Sorting With Binary Search Trees • Informal code for sorting array A of length n: BSTSort(A) for i=1 to n TreeInsert(A[i]); InorderTreeWalk(root); • Argue that this is (n lg n) • What will be the running time in the • Worst case? • Average case? (hint: remind you of anything?) David Luebke 1310/2/2014

  14. 3 1 8 2 6 5 7 Sorting With BSTs • Average case analysis • It’s a form of quicksort! for i=1 to n TreeInsert(A[i]); InorderTreeWalk(root); 3 1 8 2 6 7 5 1 2 8 6 7 5 2 6 7 5 5 7 David Luebke 1410/2/2014

  15. Sorting with BSTs • Same partitions are done as with quicksort, but in a different order • In previous example • Everything was compared to 3 once • Then those items < 3 were compared to 1 once • Etc. • Same comparisons as quicksort, different order! • Example: consider inserting 5 David Luebke 1510/2/2014

  16. Sorting with BSTs • Since run time is proportional to the number of comparisons, same time as quicksort: O(n lg n) • Which do you think is better, quicksort or BSTsort? Why? David Luebke 1610/2/2014

  17. Sorting with BSTs • Since run time is proportional to the number of comparisons, same time as quicksort: O(n lg n) • Which do you think is better, quicksort or BSTSort? Why? • A: quicksort • Better constants • Sorts in place • Doesn’t need to build data structure David Luebke 1710/2/2014

  18. More BST Operations • BSTs are good for more than sorting. For example, can implement a priority queue • What operations must a priority queue have? • Insert • Minimum • Extract-Min David Luebke 1810/2/2014

  19. BST Operations: Minimum • How can we implement a Minimum() query? • What is the running time? David Luebke 1910/2/2014

  20. BST Operations: Successor • For deletion, we will need a Successor() operation • Draw Fig 13.2 • What is the successor of node 3? Node 15? Node 13? • What are the general rules for finding the successor of node x? (hint: two cases) David Luebke 2010/2/2014

  21. BST Operations: Successor • Two cases: • x has a right subtree: successor is minimum node in right subtree • x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x • Intuition: As long as you move to the left up the tree, you’re visiting smaller nodes. • Predecessor: similar algorithm David Luebke 2110/2/2014

  22. F Example: delete Kor H or B B H C A D K BST Operations: Delete • Deletion is a bit tricky • 3 cases: • x has no children: • Remove x • x has one child: • Splice out x • x has two children: • Swap x with successor • Perform case 1 or 2 to delete it David Luebke 2210/2/2014

  23. BST Operations: Delete • Why will case 2 always go to case 0 or case 1? • A: because when x has 2 children, its successor is the minimum in its right subtree • Could we swap x with predecessor instead of successor? • A: yes. Would it be a good idea? • A: might be good to alternate David Luebke 2310/2/2014

  24. The End • Up next: guaranteeing a O(lg n) height tree David Luebke 2410/2/2014

More Related