1 / 7

十字相乘法因式分解

一丶教学目标:. 十字相乘法因式分解. 二丶复习提问; 1:计算: (1). ( x+2)(x+3); (2). (x+2)(x-3); (3). (x-2)(x-3); (4)(x+a)(x+b);. 反过来:. ( x+a)(a+b). 三丶试一试:. a 与 b 和是一次项的系数. x x. 6 -3. 解:原式=. ( x + 6). ( x -3 ). (1). 因式分解 竖直写;. (2). 交叉相乘 验中项;

Download Presentation

十字相乘法因式分解

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 一丶教学目标: 十字相乘法因式分解 二丶复习提问; 1:计算: (1). (x+2)(x+3); (2). (x+2)(x-3); (3). (x-2)(x-3); (4)(x+a)(x+b);

  2. 反过来: (x+a)(a+b) 三丶试一试: a与b和是一次项的系数 x x 6 -3 解:原式= (x+6) (x-3) (1).因式分解竖直写; (2).交叉相乘验中项; 6x-3x=3x (3).横向写出两因式; (x+6)和(x-3)

  3. x x 3 -5 (x+3) (x-5) -5x+3x=-2x 例2把 a a 5 2 解:原式= (a+5) (a+2) 2a+5a=7a ab ab -2 -5 (ab-5) (ab-2) 解:原式= -5ab-2ab=-7ab m m -5 4 解:原式= =3m (m-5) (m+4) 4m-5m=-m

  4. 结果为 A 练习一选择题: 结果为 A C 结果为 D

  5. 本课学习用十字相乘法把某二次项系数是__的二次三项式x+px+q 分解因式,如果q=ab,并且p=____,那么这个二次三项式可以分解因式. 因此,解题前先把常数项q分解因数(a和b),再看其和是否等于_______ ______ 1 a+b 小结: 一次项 系数p.

  6. 练习二丶把下列各式分解因式: 解:原式=(x+3)(x+1) 解:原式=(y-3)(y-4) 解:原式=(p-9)(p+4) 解:原式=(m+9)(m-2) =3(t-4)(t+2) =y(x-1)(x+2)

  7. x x 4 -7 提高题1把下列各式分解因式 4x-7x=-3x (x+4) (x-7) x x -y -2y =xy (x-2y) (x-y) -2xy-xy=-3xy x x 1 -7 -7x+x=-6x (x+1) (x-7)

More Related