1 / 51

Biorrefinarias: Máquinas de Produção de Energia e Armazenamento Geológico de Carbono

Café com Física IFSC /USP. Biorrefinarias: Máquinas de Produção de Energia e Armazenamento Geológico de Carbono. Paulo Seleghim Jr. seleghim@sc.usp.br. The problem. Energy use by humankind. Power to sustain our life processes. 2500 cal/day. 2000 W. 120 W. 90 W.

norman
Download Presentation

Biorrefinarias: Máquinas de Produção de Energia e Armazenamento Geológico de Carbono

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Café com FísicaIFSC/USP Biorrefinarias: Máquinas de Produção de Energia e Armazenamento Geológico de Carbono Paulo Seleghim Jr.seleghim@sc.usp.br

  2. The problem... seleghim@sc.usp.br

  3. Energy use by humankind Power to sustain our life processes 2500 cal/day 2000 W 120 W 90 W Power to support our lifestyle 500 EJ/year industry + agriculture (28% = ) 2300 W transportation sector (27%  ) 7 billion people services + residences (36%  )

  4. Typical sugarcane mill Typical sugarcane mill Non-renewable Carbon based economy CO2 energy chemical compounds petroleum seleghim@sc.usp.br

  5. Typical sugarcane mill Typical sugarcane mill Fossil carbon based economy

  6. The solution... seleghim@sc.usp.br

  7. Typical sugarcane mill Typical sugarcane mill Renewable neutral carbon based economy energy biochemical compounds CO2 seleghim@sc.usp.br

  8. Typical sugarcane mill Typical sugarcane mill Fossil carbon based economy

  9. Typical sugarcane mill Typical sugarcane mill Fossil carbon based economy Already engenders tremendous socio-economic impacts on… HUMAN CONDITION !

  10. Typical sugarcane mill Typical sugarcane mill Renewable negative carbon based economy energy - D biochemical compounds CO2 CO2 CO2 seleghim@sc.usp.br

  11. Typical sugarcane mill Typical sugarcane mill Fossil carbon based economy

  12. Typical sugarcane mill Typical sugarcane mill Fossil carbon based economy

  13. Case Study:Sugarcane in Brazil: Industrial Reference Unit seleghim@sc.usp.br

  14. Typical sugarcane mill Typical sugarcane mill Agro-Industrial Reference Unit – Processing Scales Agriculture / Industry equilibrium filed operations cost ~ r3 $ economies of scale ~r2 viability limit state of São Paulo lowerviability limit 30 kha500 tsc/h plantation external limit (r)

  15. Agro-Industrial Reference Unit – Processing Scales Agricultural production + Logistics + Industrial Processing sunlight water CO2 water1000 t/h CO2 2 t/h 200 MUS$ harvesting 500 t/h 20 – 40 kha sugar(35 t/h) ethanol(42 m3/h) electricity(50 MW) field op. solids 1-10 t/h vinasse 500 m3/h nutrients (1 ton/h) seleghim@sc.usp.br

  16. Carbon capture and storage Potential CO2 capture for a reference sugarcane mill • Fermentation: 2 tCO2/h • Bagasse and straw combustion: 89 tCO2/h Annual CO2 capture and storage by the sugarcane sector • One mill: 0.43 MtCO2/year • Number of mills: 450 average proc. rate 500tsc/h • Annual CCS: 292 MtCO2/year Annual CO2 Brazilian emissions • ~ 400 MtCo2/year seleghim@sc.usp.br

  17. Case Study:Sugarcane in Brazil: Conversion pathways seleghim@sc.usp.br

  18. sugar cane500 tc/h mechanicalprocessing straw dewatering bagasse150 t/h juiceextraction boiler andturbines water electricity 40-50 MW juice cookingcrystallization molasses sugarcentrifugation CO22 t/h sugar0-65 t/h juicefermentation winedistillation vinasse500 m3/h ethanol43-76 m3/h seleghim@sc.usp.br

  19. sugar cane500 tc/h mechanicalprocessing straw dewatering bagasse150 t/h bagasse150 t/h juiceextraction boiler andturbines water electricity 20-30 MW juice dewatering bagassepre-treatment cookingcrystallization NFFs fermentable sugars cellulosehydrolization molasses sugarcentrifugation CO22 t/h sugar0-65 t/h juicefermentation winedistillation vinasse500 m3/h ethanol43-76 m3/h seleghim@sc.usp.br

  20. sugar cane500 tc/h mechanicalprocessing straw dewatering bagasse150 t/h bagasse150 t/h juiceextraction boiler andturbines water electricity 10-20 MW juice dewatering bagassepre-treatment cookingcrystallization NFFs fermentable sugars cellulosehydrolization molasses sugarcentrifugation glycerin CO22 t/h photo-bioreactor transes-terification sugar0-65 t/h biodiesel /chemicals juicefermentation broth nutrients extractionseparation winedistillation water vinasse500 m3/h ethanol43-76 m3/h seleghim@sc.usp.br

  21. sugar cane500 tc/h mechanicalprocessing straw dewatering bagasse150 t/h bagasse150 t/h juiceextraction boiler andturbines water electricity 10-20 MW juice dewatering bagassepre-treatment cookingcrystallization NFFs fermentable sugars cellulosehydrolization molasses sugarcentrifugation methane CO22 t/h anaerobic digestion sugar0-65 t/h juicefermentation chemicals nutrients winedistillation vinasse500 m3/h water ethanol43-76 m3/h seleghim@sc.usp.br

  22. sugar cane500 tc/h mechanicalprocessing straw dewatering bagasse150 t/h bagasse150 t/h Oxycombustionboiler and turbines juiceextraction water electricity ~10 MW juice dewatering bagassepre-treatment cookingcrystallization NFFs fermentable sugars cellulosehydrolization molasses sugarcentrifugation CO2 methane CO22 t/h anaerobic digestion sugar0-65 t/h juicefermentation chemicals nutrients winedistillation vinasse500 m3/h water ethanol43-76 m3/h seleghim@sc.usp.br

  23. Production of supercritical CO2 from oxycombustion CO2 power cycle oxyfuel boiler supercritical CO2 unit power boiler cyclone condenser scCO2 economizer biomass superheater evaporator water O2 air N2 CO2 air separation unit seleghim@sc.usp.br

  24. Temperature oC pressão de injeção noreservatório separaçãoH2O Entropy kJ/kg/oC

  25. Carbon capture and storage

  26. Carbon capture and storage

  27. Carbon capture and storage

  28. Carbon capture and storage

  29. Sugarcane sector 292Mta,total Brazilian emissions 400Mta… Carbon capture and storage CO2 storage capacity (CarbMap project) • Oil and gas 2.5 Gtenough for 6 years • Saline aquifers 2000 Gtenough for 5000 years • Pre-salt ??? seleghim@sc.usp.br

  30. Reference sugarcane mill: 0.43 MtCO2/year Example of commercial plants in operation Global CCS Institute 2012, The Global Status of CCS: 2012

  31. Reference sugarcane mill: 0.43 MtCO2/year Example of commercial plants in operation Global CCS Institute 2012, The Global Status of CCS: 2012

  32. First feasibility studies: robust optimal operation seleghim@sc.usp.br

  33. Process optimization approach Inputs that miximize outputs ethanol +electricity + scCO2 operatingparameters uniform random characteristicdistributions How to set the control variables in order to increase probability of optimal conversion, given the variability of all uncontrolled variables ? seleghim@sc.usp.br

  34. Process optimization approach Monte Carlo simulations (simplified example) seleghim@sc.usp.br

  35. Process optimization approach Monte Carlo simulations (simplified example)  control variable  stochastic variables seleghim@sc.usp.br

  36. Process optimization approach Modeling equations… seleghim@sc.usp.br

  37. Simulation variables

  38. Carbon capture and storage by a sugarcane mill Optimization approach – operation envelope seleghim@sc.usp.br

  39. Carbon capture and storage by a sugarcane mill Optimization approach – operation envelope scCO2 seleghim@sc.usp.br

  40. Carbon capture and storage by a sugarcane mill Optimization approach – operation envelope scCO2 seleghim@sc.usp.br

  41. Conversion of sugarcane into ethanol and electricity Processing pathways (hem. are fermented or burned) seleghim@sc.usp.br

  42. energy conservation limit

  43. Process optimization approach control results: fiber + water contents (53%) litigation: dewatering versus sc water content 13% to 25% fiber 70 %to 55% water More fiber and less water seleghim@sc.usp.br

  44. Process optimization approach burning x hydrolysis (hemicelluloses are burned) optimality optimality 85% + 15% 15%t +o 85% Two optimal operating states seleghim@sc.usp.br

  45. Process optimization approach burning x hydrolysis (hemicelluloses are fermented) Much more robust conversion process ! seleghim@sc.usp.br

  46. Process optimization approach fiber composition (hemicelluloses are burned) more lignin, more hemicellulosesless cellulose

  47. Process optimization approach fiber composition (hemicelluloses are fermented) idem, slightly more robust process

  48. Industrial biorefineries evolution sucrose/starch (+water) lignocellulosic fiber (-water) seleghim@sc.usp.br

  49. 1G+2G BRFs will evolve to 1G2G and possibly to 2G only BRFs at much higher processing scales… seleghim@sc.usp.br

More Related