660 likes | 1.69k Views
Parallel lines ( || ): Lines in the same plane with the same slope that never intersect. . 5.6 Parallel and Perpendicular Lines:. Perpendicular lines ( ): Lines that intersect to form right angles and have opposite-inverse ( opposite reciprocal ) slopes.
E N D
Parallel lines ( || ): Lines in the same plane with the same slopethat never intersect. 5.6 Parallel and Perpendicular Lines: Perpendicular lines ( ): Lines that intersect to form right angles and have opposite-inverse (opposite reciprocal) slopes. Opposite Reciprocals: Two numbers whose product is -1.
Additional information we must know: Parallel Lines: Lines that have same slope and different y-intercept y = x + 1 andy = x -2
Additional information we must know: Perpendicular Lines: Lines that have oppositeand inverseslopes (opposite reciprocal slopes) y = -2x + 1 andy = x -2 Checking:Looking at their slopes we see that:-2(1/2) = -1
WRITING AN EQUATION OF A PARALLEL LINE: Remember: Parallel lines we must have the same slope and different y-intercepts. Ex: A line passes through (-3, -1) and is parallel to the graph of y = 2x +3.What equation represents the line in slope-intercept form?
SOLUTION: Looking at the given info we have the following: A line passes through (-3, -1) and is parallel to the graph of y = 2x +3.What equation represents the line in slope-intercept form? Point: (-3, -1) Slope: 2 Using point-slope {- = m(-)} form equation we get: -= 2(--3) = 2(3) = 2x+5 = 2)
YOU TRY IT: What equation represents the line in slope-intercept form of a line passing through (-2, 1) and parallel to 2x+3y = 6
SOLUTION: Looking at the given info we have the following: What equation represents the line in slope-intercept form of a line passing through (-2, 1) and parallel to 2x+3y = 6 y = - x + 2 Finding the slope: Slope: - Point: (-2, 1) Using point-slope {- = m(-)} form equation we get: -= - (--2) = - x - -1 = - ()
WRITING AN EQUATION OF PERPENDICULAR LINES: Remember: Perpendicular lines must have oppositeand inverseslopes. Ex: Write an equation of the line that passes through (2, 4) and is perpendicular to y = x – 1.
SOLUTION: Looking at the given info we have the following: Write an equation of the line that passes through (2, 4) and is perpendicular to y = x – 1. Point: (2, 4) Slope: opposite inverse slope: -3 Using point-slope {- = m(-)} form equation we get: - = -3(-2) = -3x+10 - 4 = -3( - 2)
YOU TRY IT: What equation represents the line in slope-intercept form of a line passing through (-2, 1) and perpendicular to 2x+3y = 6
SOLUTION: Looking at the given info we have the following: What equation represents the line in slope-intercept form of a line passing through (-2, 1) and perpendicular to 2x+3y = 6 y = - x + 2 Finding the slope: Slope: - opposite inverse Point: (-2, 1) Using point-slope {- = m(-)} form equation we get: -= (--2) = x + 4 -1 = ()
CLASSIFYING LINES: To classify a pair of lines we must look at their slope and y-intercepts thus we must write the equations in slope-intercept form (y=mx+b). MUST ALWAYS REMEMBER: * Parallel lines must have the same slope and different y-intercepts. *Perpendicular lines must have oppositeand inverseslopes.
CLASSIFYING LINES: Ex: Decide if the given equations are parallel, perpendicular or neither? Explain. 4y = -5x + 12 and 5x + 4y = -8
SOLUTION: Writing the equations in slope-intercept form to compare we have: 1) 4y = -5x + 12 Divide by 4 y = -x + 3 Slope: - , y-intercept: 3 Subtract 5x and divide by 4 2) 5x + 4y = -8 y = -x - 2 Slope: - , y-intercept: - 2 Slopes are equal, and y-intercepts different, thus we have PARALLEL LINES.
YOU TRY IT: Decide if the given equations are parallel, perpendicular or neither? Explain. y = x + 7 and 4x - 3y = 9
YOU TRY IT (SOLUTION): Writing the equations in slope-intercept form to compare we have: y = x + 7 Already in y=mx+b form Slope: , y-intercept: 7 Subtract 4x and divide by - 3 2) 4x - 3y = 9 y = x - 3 Slope: , y-intercept: - 3 Since the slopes are not equal or opposite reciprocals, the lines are neither.
SOLVING REAL-WORLD PROBLEMS In real-world situation we keep on using linear equations to provide important information that will aid us in making important decisions.
EX: An architect uses software to design the ceiling of a room. The architect needs to enter and equation that represents a new beam. The new beam will be perpendicular to the existing beam, which is represented the red line. The new beam will pass through the corner represented by the blue dot. What is an equation of the new beam?
SOLUTION: 1) Find the slope of the red line: Using A(3,6)and B(6,4) we find slope: 2) Find the opposite reciprocal slope of 3) Use the slope = and the point ( 12, 10) In - = m(-) to get: -=(-) = - -= -
VIDEOS: Parallel/Perpendicular https://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/more-analytic-geometry/v/equations-of-parallel-and-perpendicular-lines https://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/more-analytic-geometry/v/perpendicular-line-slope
CLASSWORK:Page 330-332 Problems: As many as needed to master the concept