1 / 89

Internet

Internet. L4: Internet. Last Lecture Re-cap: IP Internet. Based on the TCP/IP protocol family IP (Internet protocol) : Provides basic naming scheme (DNS) and unreliable delivery capability of packets (datagrams) from host-to-host UDP (Unreliable Datagram Protocol)

nubia
Download Presentation

Internet

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Internet L4: Internet

  2. Last Lecture Re-cap: IP Internet • Based on the TCP/IP protocol family • IP (Internet protocol) : • Provides basic naming scheme (DNS) and unreliable delivery capabilityof packets (datagrams) from host-to-host • UDP (Unreliable Datagram Protocol) • Uses IP to provide unreliable datagram delivery from process-to-process • TCP (Transmission Control Protocol) • Uses IP to provide reliable byte streams from process-to-process over connections • Accessed via a mix of Unix file I/O and functions from the sockets interface

  3. Hardware and Software Organization of an Internet Application Internet client host Internet server host Client Server User code Sockets interface (system calls) TCP/IP TCP/IP Kernel code Hardware interface (interrupts) Hardware and firmware Network adapter Network adapter Global IP Internet

  4. Today's Lecture • TCP • Connection establishment, flow control, reliability, congestion control • I/O • Unix I/O, (custom) RIO, standard I/O

  5. Establishing Connection:Three-Way handshake • Each side notifies other of starting sequence number it will use for sending • Why not simply chose 0? • Must avoid overlap with earlier incarnation • Security issues • Each side acknowledges other’s sequence number • SYN-ACK: Acknowledge sequence number + 1 • Can combine second SYN with first ACK SYN: SeqC ACK: SeqC+1 SYN: SeqS ACK: SeqS+1 Server Client

  6. Tearing Down Connection • Either side can initiate tear down • Send FIN signal • “I’m not going to send any more data” • Other side can continue sending data • Half open connection • Must continue to acknowledge • Acknowledging FIN • Acknowledge last sequence number + 1 A B FIN, SeqA ACK, SeqA+1 Data ACK FIN, SeqB ACK, SeqB+1

  7. TCP state transition (connection state)

  8. Sender/Receiver State Sender Receiver Next expected Max acceptable Max ACK received Next seqnum … … … … Sender window Receiver window Sent & Acked Sent Not Acked Received & Acked Acceptable Packet OK to Send Not Usable Not Usable

  9. Window Flow Control: Send Side Packet Received Packet Sent Source Port Dest. Port Source Port Dest. Port Sequence Number Sequence Number Acknowledgment Acknowledgment HL/Flags Window HL/Flags Window D. Checksum Urgent Pointer D. Checksum Urgent Pointer Options… Options... App write acknowledged sent to be sent outside window

  10. TCP congestion control • Need to share network resources. • But neither the sender or the receiver knows how much b/w is available. • How much should we send?

  11. TCP congestion control • Slow start • Increase the congestion window +1 for every ack. • Fast recovery • On detection of dropped packet (dup ack) reduce the congestion window by half. • Called multiplicative decrease • Congestion avoidance • Increase 1 every RTT • Called additive increase • Details in computer networks course

  12. TCP Saw Tooth Behavior Congestion Window Timeouts may still occur Time Slowstart to pace packets Fast Retransmit and Recovery Initial Slowstart

  13. Important Lessons • TCP state diagram  setup/teardown • Making sure both sides end up in same state • TCP congestion control • Need to share some resources without knowing their current state • Good example of adapting to network performance • Sliding window flow control • Addresses buffering issues and keeps link utilized • Need to ensure that distributed resources that are known about aren’t overloaded

  14. Today • TCP • I/O • Unix I/O • RIO (robust I/O) package • Standard I/O

  15. Unix Files • A Unix file is a sequence of m bytes: • B0 , B1 , .... , Bk , .... , Bm-1 • All I/O devices are represented as files: • /dev/sda2(/usrdisk partition) • /dev/tty2(terminal) • Even the kernel is represented as a file: • /dev/kmem(kernel memory image) • /proc(kernel data structures)

  16. Unix File Types • Regular file • File containing user/app data (binary, text, whatever) • OS does not know anything about the format • other than “sequence of bytes”, akin to main memory • Directory file • A file that contains the names and locations of other files • Character special and block special files • Terminals (character special) and disks (block special) • FIFO (named pipe) • A file type used for inter-process communication • Socket • A file type used for network communication between processes

  17. Unix I/O • Key Features • Elegant mapping of files to devices allows kernel to export simple interface called Unix I/O • Important idea: All input and output is handled in a consistent and uniform way • Basic Unix I/O operations (system calls): • Opening and closing files • open()and close() • Reading and writing a file • read()and write() • Changing the current file position(seek) • indicates next offset into file to read or write • lseek() Bk+1 B0 B1 • • • Bk-1 Bk • • • Current file position = k

  18. Opening Files • Opening a file informs the kernel that you are getting ready to access that file • Returns a small identifying integer file descriptor • fd == -1indicates that an error occurred • Each process created by a Unix shell begins life with three open files associated with a terminal: • 0: standard input • 1: standard output • 2: standard error intfd; /* file descriptor */ if ((fd = open("/etc/hosts", O_RDONLY)) < 0) { perror("open"); exit(1); }

  19. Closing Files • Closing a file informs the kernel that you are finished accessing that file • Closing an already closed file is a recipe for disaster in threaded programs (more on this later) • Moral: Always check return codes, even for seemingly benign functions such as close() int fd; /* file descriptor */ int retval; /* return value */ if ((retval = close(fd)) < 0) { perror("close"); exit(1); }

  20. Reading Files • Reading a file copies bytes from the current file position to memory, and then updates file position • Returns number of bytes read from file fd into buf • Return type ssize_t is signed integer • nbytes < 0indicates that an error occurred • Short counts(nbytes < sizeof(buf)) are possible and are not errors! char buf[512]; int fd; /* file descriptor */ int nbytes; /* number of bytes read */ /* Open file fd ... */ /* Then read up to 512 bytes from file fd */ if ((nbytes = read(fd, buf, sizeof(buf))) < 0) { perror("read"); exit(1); }

  21. Writing Files • Writing a file copies bytes from memory to the current file position, and then updates current file position • Returns number of bytes written from buf to file fd • nbytes < 0indicates that an error occurred • As with reads, short counts are possible and are not errors! char buf[512]; int fd; /* file descriptor */ int nbytes; /* number of bytes read */ /* Open the file fd ... */ /* Then write up to 512 bytes from buf to file fd */ if ((nbytes = write(fd, buf, sizeof(buf)) < 0) { perror("write"); exit(1); }

  22. Simple Unix I/O example • Copying standard in to standard out, one byte at a time #include "csapp.h" intmain(void) { char c; while(Read(STDIN_FILENO, &c, 1) != 0) Write(STDOUT_FILENO, &c, 1); exit(0); } cpstdin.c Note the use of error handling wrappers for read and write (Appendix A).

  23. Dealing with Short Counts • Short counts can occur in these situations: • Encountering (end-of-file) EOF on reads • Reading text lines from a terminal • Reading and writing network sockets or Unix pipes • Short counts never occur in these situations: • Reading from disk files (except for EOF) • Writing to disk files • One way to deal with short counts in your code: • Use the RIO (Robust I/O) package from your textbook’s csapp.cfile (Appendix B)

  24. Today • TCP • I/O • Unix I/O • RIO (robust I/O) package • Standard I/O

  25. The RIO Package • RIO is a set of wrappers that provide efficient and robust I/O in apps, such as network programs that are subject to short counts • RIO provides two different kinds of functions • Unbuffered input and output of binary data • rio_readn and rio_writen • Buffered input of binary data and text lines • rio_readlineb and rio_readnb • Buffered RIO routines are thread-safe and can be interleaved arbitrarily on the same descriptor • Download from http://csapp.cs.cmu.edu/public/code.html src/csapp.cand include/csapp.h

  26. Unbuffered RIO Input and Output • Same interface as Unix read and write • Especially useful for transferring data on network sockets • rio_readnreturns short count only if it encounters EOF • Only use it when you know how many bytes to read • rio_writennever returns a short count • Calls to rio_readnand rio_writencan be interleaved arbitrarily on the same descriptor #include "csapp.h" ssize_trio_readn(intfd, void *usrbuf, size_t n); ssize_trio_writen(intfd, void *usrbuf, size_t n); Return: num. bytes transferred if OK,0 on EOF (rio_readn only), -1 on error

  27. Implementation of rio_readn /* * rio_readn - robustly read n bytes (unbuffered) */ ssize_trio_readn(intfd, void *usrbuf, size_t n) { size_tnleft = n; ssize_tnread; char *bufp = usrbuf; while (nleft > 0) { if ((nread = read(fd, bufp, nleft)) < 0) { if (errno == EINTR) /* interrupted by sig handler return */ nread = 0; /* and call read() again */ else return -1; /* errno set by read() */ } else if (nread == 0) break; /* EOF */ nleft -= nread; bufp += nread; } return (n - nleft); /* return >= 0 */ } csapp.c

  28. Buffered I/O: Motivation • Applications often read/write one character at a time • getc, putc, ungetc • gets, fgets • Read line of text on character at a time, stopping at newline • Implementing as Unix I/O calls expensive • read and write require Unix kernel calls • > 10,000 clock cycles • Solution: Buffered read • Use Unix read to grab block of bytes • User input functions take one byte at a time from buffer • Refill buffer when empty already read unread Buffer

  29. Buffered I/O: Implementation • For reading from file • File has associated buffer to hold bytes that have been read from file but not yet read by user code • Layered on Unix file: rio_cnt already read unread Buffer rio_buf rio_bufptr Buffered Portion not in buffer already read unread unseen Current File Position

  30. Buffered I/O: Declaration • All information contained in struct rio_cnt already read unread Buffer rio_buf rio_bufptr typedefstruct { intrio_fd; /* descriptor for this internal buf */ intrio_cnt; /* unread bytes in internal buf */ char *rio_bufptr; /* next unread byte in internal buf */ char rio_buf[RIO_BUFSIZE]; /* internal buffer */ } rio_t;

  31. Buffered RIO Input Functions • Efficiently read text lines and binary data from a file partially cached in an internal memory buffer • rio_readlineb reads a text line of up to maxlen bytes from file fd and stores the line in usrbuf • Especially useful for reading text lines from network sockets • Stopping conditions • maxlen bytes read • EOF encountered • Newline (‘\n’) encountered #include "csapp.h" void rio_readinitb(rio_t *rp, intfd); ssize_trio_readlineb(rio_t *rp, void *usrbuf, size_tmaxlen); Return: num. bytes read if OK, 0 on EOF, -1 on error

  32. Buffered RIO Input Functions (cont) • rio_readnb reads up to n bytes from file fd • Stopping conditions • maxlen bytes read • EOF encountered • Calls to rio_readlineb and rio_readnb can be interleaved arbitrarily on the same descriptor • Warning: Don’t interleave with calls to rio_readn #include "csapp.h" void rio_readinitb(rio_t *rp, intfd); ssize_trio_readlineb(rio_t *rp, void *usrbuf, size_tmaxlen); ssize_trio_readnb(rio_t *rp, void *usrbuf, size_t n); Return: num. bytes read if OK, 0 on EOF, -1 on error

  33. RIO Example • Copying the lines of a text file from standard input to standard output #include "csapp.h" int main(int argc, char **argv) { int n; rio_t rio; char buf[MAXLINE]; Rio_readinitb(&rio, STDIN_FILENO); while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) Rio_writen(STDOUT_FILENO, buf, n); exit(0); } cpfile.c

  34. Standard I/O Functions • The C standard library (libc.so) contains a collection of higher-level standard I/O functions • Documented in Appendix B of K&R. • Examples of standard I/O functions: • Opening and closing files (fopen and fclose) • Reading and writing bytes (fread and fwrite) • Reading and writing text lines (fgets and fputs) • Formatted reading and writing (fscanf and fprintf)

  35. Standard I/O Streams • Standard I/O models open files as streams • Abstraction for a file descriptor and a buffer in memory. • Similar to buffered RIO • C programs begin life with three open streams (defined in stdio.h) • stdin (standard input) • stdout (standard output) • stderr (standard error) #include <stdio.h> extern FILE *stdin; /* standard input (descriptor 0) */ extern FILE *stdout; /* standard output (descriptor 1) */ extern FILE *stderr; /* standard error (descriptor 2) */ int main() { fprintf(stdout, "Hello, world\n"); }

  36. Buffering in Standard I/O • Standard I/O functions use buffered I/O • Buffer flushed to output fd on “\n” or fflush() call printf("h"); printf("e"); printf("l"); printf("l"); printf("o"); buf printf("\n"); h e l l o \n . . fflush(stdout); write(1, buf, 6);

  37. Standard I/O Buffering in Action • You can see this buffering in action for yourself, using the always fascinating Unix strace program: #include <stdio.h> int main() { printf("h"); printf("e"); printf("l"); printf("l"); printf("o"); printf("\n"); fflush(stdout); exit(0); } linux> strace ./hello execve("./hello", ["hello"], [/* ... */]). ... write(1, "hello\n", 6) = 6 ... exit_group(0) = ?

  38. Today • TCP • Unix I/O • RIO (robust I/O) package • Standard I/O • Conclusions

  39. Unix I/O vs. Standard I/O vs. RIO • Standard I/O and RIO are implemented using low-level Unix I/O • Which ones should you use in your programs? fopen fdopen fread fwrite fscanf fprintf sscanf sprintf fgets fputs fflush fseek fclose C application program rio_readn rio_writen rio_readinitb rio_readlineb rio_readnb Standard I/O functions RIO functions open read write lseek stat close Unix I/O functions (accessed via system calls)

  40. Choosing I/O Functions • General rule: use the highest-level I/O functions you can • Many C programmers are able to do all of their work using the standard I/O functions • When to use standard I/O • When working with disk or terminal files • When to use raw Unix I/O • Inside signal handlers, because Unix I/O is async-signal-safe. • In rare cases when you need absolute highest performance. • When to use RIO • When you are reading and writing network sockets. • Avoid using standard I/O on sockets.

  41. A Programmer’s View of the Internet • Hosts are mapped to a set of 32-bit IP addresses • 128.2.203.179 • The set of IP addresses is mapped to a set of identifiers called Internet domain names • 128.2.203.179 is mapped to www.cs.cmu.edu • A process on one Internet host can communicate with a process on another Internet host over a connection

  42. IP Addresses • 32-bit IP addresses are stored in an IP address struct • IP addresses are always stored in memory in network byte order (big-endian byte order) • True in general for any integer transferred in a packet header from one machine to another. • E.g., the port number used to identify an Internet connection. /* Internet address structure */ structin_addr { unsigned ints_addr; /* network byte order (big-endian) */ }; • Useful network byte-order conversion functions (“l” = 32 bits, “s” = 16 bits) • htonl: convert uint32_t from host to network byte order • htons: convert uint16_t from host to network byte order • ntohl: convert uint32_t from network to host byte order • ntohs: convert uint16_t from network to host byte order

  43. Dotted Decimal Notation • By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period • IP address:0x8002C2F2 = 128.2.194.242 • Functions for converting between binary IP addresses and dotted decimal strings: • inet_aton:dotted decimal string → IP address in network byte order • inet_ntoa:IP address in network byte order → dotted decimal string • “n” denotes network representation • “a” denotes application representation

  44. IP Address Structure • IP (V4) Address space divided into classes: • Network ID Written in form w.x.y.z/n • n = number of bits in host address • E.g., CMU written as 128.2.0.0/16 • Class B address • Unrouted (private) IP addresses: 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16 0 1 2 3 8 16 24 31 0 Class A Net ID Host ID 1 0 Class B Net ID Host ID 1 1 0 Class C Net ID Host ID 1 1 1 0 Class D Multicast address 1 1 1 1 Class E Reserved for experiments

  45. Internet Domain Names unnamed root .net .edu .gov .com First-level domain names Second-level domain names mit cmu berkeley amazon Third-level domain names cs ece www 2007.171.166.252 ics sp greatwhite 128.2.220.10 i386-f7 128.2.200.47

  46. Domain Naming System (DNS) • The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database called DNS • Conceptually, programmers can view the DNS database as a collection of millions of host entry structures: • Functions for retrieving host entries from DNS: • gethostbyname: query key is a DNS domain name. • gethostbyaddr: query key is an IP address. /* DNS host entry structure */ structhostent { char *h_name; /* official domain name of host */ char **h_aliases; /* null-terminated array of domain names */ inth_addrtype; /* host address type (AF_INET) */ inth_length; /* length of an address, in bytes */ char **h_addr_list; /* null-terminated array of in_addrstructs */ };

  47. Properties of DNS Host Entries • Each host entry is an equivalence class of domain names and IP addresses • Each host has a locally defined domain name localhost which always maps to the loopback address127.0.0.1 • Different kinds of mappings are possible: • Simple case: one-to-one mapping between domain name and IP address: • greatwhile.ics.cs.cmu.edu maps to 128.2.220.10 • Multiple domain names mapped to the same IP address: • eecs.mit.eduandcs.mit.eduboth map to18.62.1.6 • Multiple domain names mapped to multiple IP addresses: • google.commaps to multiple IP addresses • Some valid domain names don’t map to any IP address: • for example: ics.cs.cmu.edu

  48. A Program That Queries DNS int main(intargc, char **argv) { /* argv[1] is a domain name */ char **pp; /* or dotted decimal IP addr */ structin_addraddr; structhostent *hostp; if (inet_aton(argv[1], &addr) != 0) hostp = Gethostbyaddr((const char *)&addr, sizeof(addr), AF_INET); else hostp = Gethostbyname(argv[1]); printf("official hostname: %s\n", hostp->h_name); for (pp = hostp->h_aliases; *pp != NULL; pp++) printf("alias: %s\n", *pp); for (pp = hostp->h_addr_list; *pp != NULL; pp++) { addr.s_addr = ((structin_addr *)*pp)->s_addr; printf("address: %s\n", inet_ntoa(addr)); } }

  49. Using DNS Program linux> ./dns greatwhite.ics.cs.cmu.edu official hostname: greatwhite.ics.cs.cmu.edu address 128.2.220.10 linux> ./dns 128.2.220.11 official hostname: ANGELSHARK.ICS.CS.CMU.EDU address: 128.2.220.11 linux> ./dns www.google.com official hostname: www.l.google.com alias: www.google.com address: 72.14.204.99 address: 72.14.204.103 address: 72.14.204.104 address: 72.14.204.147 linux> dig +short -x 72.14.204.103 iad04s01-in-f103.1e100.net.

  50. Querying DIG • Domain Information Groper (dig) provides a scriptable command line interface to DNS linux> dig +short greatwhite.ics.cs.cmu.edu 128.2.220.10 linux> dig +short -x 128.2.220.11 ANGELSHARK.ICS.CS.CMU.EDU. linux> dig +short google.com 72.14.204.104 72.14.204.147 72.14.204.99 72.14.204.103 linux> dig +short -x 72.14.204.103 iad04s01-in-f103.1e100.net.

More Related