710 likes | 724 Views
Discover the historical journey, motivation, and new results of the SLAC E158 experiment led by Yury Kolomensky at UC Berkeley. Explore the experimental technique and the high-energy physics data collected, providing insights into electroweak interactions and beyond. The collaboration, challenges, and future outlook are highlighted.
E N D
From Z0 to Zero:A Precise Measurement of the Weak Mixing Angle from SLAC E158 Yury Kolomensky UC Berkeley For SLAC E158 Collaboration
Outline • Historical interlude • SLAC E158 • Motivation • Experimental technique • New results • Outlook Yury Kolomensky, E158 Results
End Station A End Station A Yury Kolomensky, E158 Results
End Station A: How It All Started SLAC-R-090 (08/1968) Experiment E-4: SLAC-MIT-CIT (precursor to discovery of quarks) First high-power LH2 target at SLAC ! Yury Kolomensky, E158 Results
SLAC E122 Yury Kolomensky, E158 Results
SLAC E122 Detector e 16 – 22 GeV Liquid Deuterium Polarized GaAs source High current 30 cm target Dedicated run Yury Kolomensky, E158 Results
E122 Asymmetry Yury Kolomensky, E158 Results
SLAC E122 Result (1978) sin2qW = 0.224 + 0.020 First definitive measurement of mixing between the weak and electromagnetic interaction Yury Kolomensky, E158 Results
A-Line 50 GeV Upgrade 50 GeVcapability In ESA: 1995 Polarized structure Function experiments: E154,E155,E155x Yury Kolomensky, E158 Results
E158 Heritage • SLAC provides unique capabilities with high-intensity, high-energy, high-polarization beams • We are building on the past experience and physics interests • Electroweak physics • Even tests of QED and QCD predictions (somewhat surprisingly) • 3 fundamental interactions for the price of one experiment ! Yury Kolomensky, E158 Results
SLAC E158: Motivation Yury Kolomensky, E158 Results
“High Energy”ElectroweakData (LEP EWWG) Yury Kolomensky, E158 Results
“High Energy” EW Data • Spectacular precision • Quantum loop level (LO to NNLO) • Precise indirect constraints on top and Higgs masses • General consistency with the Standard Model • Few smoking guns • Leptonic and hadronic Z couplings seem inconsistent ? • Direct searches have not yielded new physics phenomena (so far) • Complementary sensitivity at low energies • Rare or forbidden processes • Symmetry violations • Precision measurements BaBar and E158 Yury Kolomensky, E158 Results
Direct vs Indirect Searches (according to Grimm Brothers) Yury Kolomensky, E158 Results
Electroweak Physics Away from Z pole • Precision Z observables establish anchor points for SM • Low energy observables probe interference between SM and NP • Current “low energy” experiments are accessing scales of beyond 10 TeV Yury Kolomensky, E158 Results
Electroweak Mixing Angle • Mixing of neutral SU(2)U(1) currents: • Mixing angle: • e = g sinqW = g’cosqW • At tree level sin2qW = 1-MW2/MZ2 Yury Kolomensky, E158 Results
Running of Weak Mixing Angle sin2qW = e2/g2 → test gauge structure of SU(2)U(1) 3% Yury Kolomensky, E158 Results
Status Before E158 (1997) sin2qW Q (GeV) Yury Kolomensky, E158 Results
Status A Week Ago sin2qw Run I & II Q (GeV) Yury Kolomensky, E158 Results
The Experiment Yury Kolomensky, E158 Results
Weak-Electromagnetic Interference in Electron Scattering Yury Kolomensky, E158 Results
Fixed Target Møller Scattering Purely leptonic reaction gee ~ 1 – 4 sin2W Yury Kolomensky, E158 Results
Parity Violation in Møller Scattering • Scatter polarized 50 GeV electrons off unpolarized atomic electrons • Measure • Small tree-level asymmetry • At tree level, • Raw asymmetry about 130 ppb • Measure it with precision of 10% • Most precise measurement of sin2qW at low Q2 Yury Kolomensky, E158 Results
LEPII e e e e e e e e E158 R R R R L L L L + – L~15 TeV e e e e e e e e Compositeness e e q l+ Z’ FNAL Z´ q e e l- Neutral currents (GUTs, extra dims) MZ’~1 TeV e e D- - e e Scalar interactions (LFV) E158: Physics Sensitivity • Unique window of opportunity • Complementary to collider searches Yury Kolomensky, E158 Results
PAC approval Polarized Beam Instrumentation R&D Spectrometer and Detector Design Construction Funds and Test Beams Commissioning Run Physics Run I Physics Run II Physics Run III (final statistics) Sept 1997: 1998: 1999: 2000: 2001: Spring 2002: Fall 2002: Summer 2003: E158 Collaboration Institutions Caltech Syracuse Princeton Jefferson Lab SLAC UC Berkeley CEA Saclay UMass Amherst Smith College U. of Virginia 60 physicists, 7 Ph.D. students Chronology: Yury Kolomensky, E158 Results
Run I Results Published Yury Kolomensky, E158 Results
Experimental Technique • Scattering of polarized electrons off atomic electrons • High cross section (14 mBarn) • High intensity electron beam, ~80% polarization • 1.5m LH2 target • Luminosity 4*1038 cm-2s-1 • High counting rates [ flux-integrating calorimeter • Principal backgrounds: elastic and inelastic ep • Main systematics: beam polarization, helicity-correlated beam effects, backgrounds Yury Kolomensky, E158 Results
Major Challenges • Statistics ! • Need to accumulate ~1016 electrons • Suppress other sources of noise to be dominated by counting statistics • Beam monitoring and resolution • Major (potential) source of additional jitter • Beam systematics • False asymmetries • Backgrounds • Need to measure insitu Yury Kolomensky, E158 Results
Key Ingredients • High beam polarization and current • Largest high-power LH2 target in the world • Spectrometer optimized for Møller kinematics • Stringent control of helicity-dependent systematics. Passive asymmetry reversals Yury Kolomensky, E158 Results
Correct for difference in R/L beam properties: charge, position, angle, energy R-L differences coefficients determined experimentally Physics asymmetry: backgrounds beam polarization Parity-Violating Asymmetry Rapidly flip electron helicity (120 Hz) and form pulse pairs of opposite helicity Measure pulse-pair flux asymmetry: Yury Kolomensky, E158 Results
Statistics # electrons per pulse 107 Rep rate (120 Hz) 109 Seconds/day 1014 100 days 1016 DA ~ 10-8 Yury Kolomensky, E158 Results
E158 Runs Run 1: Spring 2002 Run 2: Fall 2002 Run 3: Summer 2003 Yury Kolomensky, E158 Results
Eliminating Beam Jitter Integrate Detector response: Flux Counting Yury Kolomensky, E158 Results
New cathode Electrons per pulse Old cathode Laser Power (µJ) Polarized Beam High doping for 10-nm GaAs surface overcomes charge limit. Low doping for most of active layer yields high polarization. No sign of charge limit! Yury Kolomensky, E158 Results
Control of Beam Systematics • Beam helicity is chosen pseudo- randomly at 120 Hz • use electro-optical Pockels cell in Polarized Light Source • sequence of pulse quadruplets • Reduce beam asymmetries by feedback at the Source • Control charge asymmetry and position asymmetry Yury Kolomensky, E158 Results
Passive Reversals and Checks • Physics Asymmetry Reversals: • Insertable Half-Wave Plate in Polarized Light Source • (g-2) spin precession in A-line (45 GeV and 48 GeV data) • False Asymmetry Reversals: • Reverse false beam position and angle asymmetries; physics asymmetry unchanged • Insertable “-I/+I” Inverter in Polarized Light Source • “Null Asymmetry” Cross-check is provided by a Luminosity Monitor • measure very forward angle e-p (Mott) and Møller scattering Yury Kolomensky, E158 Results
Polarized Source Yury Kolomensky, E158 Results
RF Cavity BPM Pulse-to-pulse monitoring of beam asymmetries and resolutions: toroid 30 ppm energy 1 MeV BPM 2 microns Agreement (MeV) BPM24 X (MeV) Resolution 1.05 MeV BPM12 X (MeV) Beam Diagnostics Energy dithering region A-Line linac Yury Kolomensky, E158 Results
Charge asymmetry agreement at 45 GeV Charge asymmetry at 1 GeV Energy difference agreement in A line Energy difference in A line Position agreement ~ 1 nm Position differences < 20 nm Beam Asymmetries Yury Kolomensky, E158 Results
Møller Polarimetry • Average polarization: • 85 ± 5% in Run I • 84 ± 5% in Run II • 91 ± 5% in Run III • New superlattice ! Yury Kolomensky, E158 Results
Liquid Hydrogen Target Refrigeration Capacity 1 kW Operating Temperature 20 K Length 1.5 m Flow Rate 5 m/s Vertical Motion 6 inches Yury Kolomensky, E158 Results
Kinematics Yury Kolomensky, E158 Results
Spectrometer x (cm) Yury Kolomensky, E158 Results
target Detector cart Concrete shielding Spectrometer magnets Setup in ESA Yury Kolomensky, E158 Results
Detector Concept Yury Kolomensky, E158 Results
Basic Idea: light guide :quartz : copper air shielding PMT MOLLER Detector electron flux Yury Kolomensky, E158 Results
Luminosity Monitor more than 108 scattered electrons per spill at lab ~ 1 mrad • Null asymmetry test • Density fluctuations monitor • Enhanced sensitivity • to beam fluctuations Parallel plates Yury Kolomensky, E158 Results
Profile Detector • 4 Quartz Cherenkov detectors with PMT readout • insertable pre-radiators • insertable shutter in front of PMTs • Radial and azimuthal scans • collimator alignment, spectrometer tuning • background determination • Q2 measurement Yury Kolomensky, E158 Results