1 / 35

Artificial intelligence for automated fitting of cochlear implants

Artificial intelligence for automated fitting of cochlear implants. Paul J Govaerts, MSc, MD, PhD B Vaerenberg , G De Ceulaer, W Kowalczyk, J Diez, I Bermejo The Eargroup ( Antwerp , Belgium ) & Universities of Antwerp (BE), Leiden (NL), UNED (ES). CI FITTING. Eargroup approach

nuwa
Download Presentation

Artificial intelligence for automated fitting of cochlear implants

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Artificial intelligencefor automated fitting of cochlear implants Paul J Govaerts, MSc, MD, PhD B Vaerenberg , G De Ceulaer, W Kowalczyk, J Diez, I Bermejo The Eargroup (Antwerp, Belgium) & Universities of Antwerp (BE), Leiden (NL), UNED (ES)

  2. CI FITTING • Eargroup approach • Outcome based • Systematicapproach • Start with “One fits all”, postpone tailoring • State of the art • Comfort based • No systematic approach, no universal GCP, hugevariability • Tailoring from the start

  3. Fitting for performance Measure outcome Interpret MAP & outcome Modify MAP

  4. Outcome based intensity spectralcontent temporalcontent

  5. Fitting for performance N > 60 N > 150 Measure outcome Interpret MAP & outcome Modify MAP audiometry speech audiometry Fitting to Outcome eXpert Govaerts, et al. OtolNeurotol 2010; 31(6):908-18.

  6. FOX 1.1 • SW opens in the background • 3 active maps ready to be foxed ...

  7. FOX 1.1 • User interface • Password protectedlog-in • User friendlypatient-selection • SW opens in the back • 3 active maps ready to be foxed ...

  8. FOX 1.1 • Typical procedure • Open FOX – Select MAP • Perform 2 outcome measures (20 ‘) • Request advice – Judge – Accept recommendations • Put new map in processor

  9. Case Case1: 4 monthsafterswitch-on

  10. switch-on P75 P50 P25

  11. Fittingscheme 0 1 2 3 4 5 6 7 8 9 10 11 12 18 24 5’+40’ AutoMaps Switch on Silver 1 Silver 2 Silver 3 Gold 1 Gold 2 Gold 3 Ivory 1 Ivory 2 Ivory 3

  12. Audiogram • A§E phonemediscrimination Fittingscheme 0 1 2 3 4 5 6 7 8 9 10 11 12 18 24 30’ 30’ 5’+40’ 15’ Source MAP AutoMaps Map modifications Switch on Gold 3#1 Silver 1 Gold 3#2, … Silver 2 Silver 3 Gold 1 Gold 2 Gold 3 Ivory 1 Ivory 2 Ivory 3 • A§E LoudnessScaling • Speech Audiogram

  13. Fittingscheme 0 1 2 3 4 5 6 7 8 9 10 11 12 18 24 30’ 30’ 5’+40’ 15’ 3 hours

  14. Preliminaryresults 0 1 2 3 4 5 6 7 8 9 10 11 12 18 24 30’ 30’ 5’+40’ 15’ 3 hours Vaerenberg, et al. Int J Audiol 2011; 50:50-8. • Switch on: N=8, Fox 1.1(EG0910)  3 months postop (2,5 hours) • Ongoing trial Europe, India

  15. FOXEuropean Multicentric Study Andreas Büchner, Thomas Lenarz, MHH, Hannover, Germany Rolf-Dieter Battmer, Romy Goetze, UKB, Berlin, Germany Isabelle Mosinier, Stephanie Borel, Beaujon, Paris, France Huw Cooper, Claire Fielden, University hospital, Birmingham, UK ZebunissaVanat, Joanne Muff, Adenbrookes, Cambridge, UK Terry Nunn, Anzel Britz, Guy’s and St.Thomas’, London, UK Filiep Vanpoucke, Advanced Bionics Europe Dzemal Gazibegovic, Advanced Bionics Europe Paul Govaerts, Eargroup, Antwerp, Belgium

  16. Preliminaryresults ~ 36000 outcome points in 275 CI users in 15 CI centres intensity spectralcontent temporalcontent

  17. Preliminaryresults: Audiogram Target = 30 dB (35 for 250 Hz) Tolerance = 40 dB

  18. Audiogram

  19. Audiogram

  20. Preliminaryresults ~ 36000 outcome points in 275 CI users in 15 CI centres intensity spectralcontent temporalcontent

  21. Spectraldiscrimination

  22. Spectraldiscrimination

  23. SpectralDiscrimination

  24. SpectralDiscrimination

  25. Spectraldiscrimination

  26. m-z y-i v-z ɛ-a ə-ɛ z-s

  27. Preliminaryresults ~ 36000 outcome points in 275 CI users in 15 CI centres intensity spectralcontent temporalcontent

  28. Loudnessscaling

  29. LoudnessScaling

  30. Preliminaryresults ~ 36000 outcome points in 275 CI users in 15 CI centres intensity spectralcontent temporalcontent

  31. Speech Audiometry

  32. Speech Audiometry

  33. Speech Audiometry

  34. Overall (41 outcome points)

  35. Conclusions • Measure performance • Feasible in dailyclinicalpractice (<10’ per test) • Language independent • Target = normalvalues audiometry speech audiometry http://otoconsult.com • Artificial Intelligence • Assists the audiologist to navigate • Optimises results • Systematises procedure • Allows for quality control

More Related