210 likes | 226 Views
This guide covers how to effectively manage shared mutable data in Java concurrency, emphasizing the importance of synchronization to ensure atomic transitions. Examples and solutions provided include using synchronized methods, avoiding excessive synchronization, and sharing data between threads effectively. Additional topics discussed include volatile keyword usage, avoiding wild results, and the importance of communication in multithreading environments.
E N D
Effective Java:Concurrency Spring 2013
Agenda • Material From Joshua Bloch • Effective Java: Programming Language Guide • Cover Items 66-73 • “Concurrency” Chapter • Bottom Line: • Primitive Java concurrency is complex
Item 66: Synchronize Access to Shared Mutable Data • Method synchronization yields atomic transitions: • public synchronized boolean doStuff() {…} • Fairly well understood… • Method synchronization also ensures that other threads “see” earlier threads • Not synchronizing on shared “atomic” data produces wildly counterintuitive results • Not well understood
Item 66: Unsafe Example // Broken! How long do you expect this program to run? public class StopThread { private static boolean stopRequested; public static void main (String[] args) throws InterruptedException { Thread backgroundThread = new Thread(new Runnable() { public void run() { // May run forever! int i=o; while (! stopRequested) i++; // See below }}); backgroundThread.start(); TimeUnit.SECONDS.sleep(1); stopRequested = true; } } // Hoisting transform: // while (!loopTest) {i++;} if (!loopTest) while(true) {i++;} // Also note anonymous class
Item 66: Fixing the Example // As before, but with synchronized calls public class StopThread { private static boolean stopReq; public static synchronized void setStop() {stopReq = true;} public static synchronized void getStop() {return stopReq;} public static void main (String[] args) throws InterruptedException { Thread backgroundThread = new Thread(new Runnable() { public void run() { // Now “sees” main thread int i=o; while (! getStop() ) i++; }}); backgroundThread.start(); TimeUnit.SECONDS.sleep(1); setStop(); } } // Note that both setStop() and getStop() are synchronized // Issue is communication, not mutual exclusion!
Item 66: A volatile Fix for the Example // A fix with volatile public class StopThread { // Pretty subtle stuff, using the volatile keyword private static volatile boolean stopRequested; public static void main (String[] args) throws InterruptedException { Thread backgroundThread = new Thread(new Runnable() { public void run() { int i=o; while (! stopRequested) i++; }}); backgroundThread.start(); TimeUnit.SECONDS.sleep(1); stopRequested = true; } }
Item 66: volatile Does Not Guarantee Mutual Exclusion // Broken! Requires Synchronization! private static volatile int nextSerialNumber = 0; public static int generateSerialNumber() { return nextSerialNumber++; } Problem is that the “++” operator is not atomic // Even better! (See Item 47) private static final AtomicLong nextSerial = new AtomicLong(); public static long generateSerialNumber() { return nextSerial.getAndIncrement(); }
Item 66: Advice on Sharing Data Between Threads • Share Immutable Data! • Confine mutable data to a single Thread • May modify, then share (no further changes) • Called “Effectively Immutable” • Allows for “Safe Publication” • Mechanisms for safe publication • In static field at class initialization • volatile field • final field • field accessed with locking (ie synchronization) • Store in concurrent collection (Item 69)
Item 67: Avoid Excessive Synchronization // Broken! Invokes alien method from sychronized block public interface SetOb<E> { void added(ObservableSet<E> set, E el);} public class ObservableSet<E> extends ForwardingSet<E> { // Bloch 16 public ObservableSet(Set<E> set) { super(set); } private final List<SetOb<E>> obs = new ArrayList<SetOb<E>>(); public void addObserver (SetObs<E> ob ) { synchronized (obs) { obs.add(ob); } } public boolean removeObserver (SetOb<E> ob ) { synchronized (obs) { return obs.remove(ob); } } private void notifyElementAdded (E el) { synchronized(obs) { for (SetOb<E> ob:obs) // Exceptions? ob.added(this, el);} @Override public boolean add(E el) { // from Set interface boolean added = super.add(el); if (added) notifyElementAdded (el); return added; }}
More Item 67: What’s the Problem? public static void main (String[] args) { ObservableSet<Integer> set = new ObservableSet<Integer> (new HashSet<Integer>); set.addObserver (new SetOb<Integer>() { public void added (ObservableSet<Integer> s, Integer e) { System.out.println(e); if (e.equals(23)) s.removeObserver(this); // Oops! CME // See Bloch for a variant that deadlocks instead of CME } }); for (int i=0; i < 100; i++) set.add(i); }
More Item 67: Turning the Alien Call into an Open Call // Alien method moved outside of synchronized block – open call private void notifyElementAdded(E el) { List<SetOb<E>> snapshot = null; synchronized (observers) { snapshot = new ArrayList<SetOb<E>>(obs); } for (SetObserver<E> observer : snapshot) observer.added(this, el) // No more CME }} Open Calls increase concurrency and prevent failures Rule: Do as little work inside synch block as possible When designing a new class: Do NOT internally synchronize absent strong motivation Example: StringBuffer vs. StringBuilder
Item 67: Alternate Fix Using CopyOnWriteArray public interface SetOb<E> { void added(ObservableSet<E> set, E el);} public class ObservableSet<E> extends ForwardingSet<E> { // Bloch 16 public ObservableSet(Set<E> set) { super(set); } private final List<SetOb<E>> obs = new CopyOnWriteArrayList<SetOb<E>>(); public void addObserver (SetObs<E> ob ) { synchronized (obs) { obs.add(ob); } } public boolean removeObserver (SetOb<E> ob ) { synchronized (obs) { return obs.remove(ob); } } private void notifyElementAdded (E el) { {for (SetOb<E> ob:obs) // Iterate on copy – No Synch! ob.added(this, el);} @Override public boolean add(E el) { // from Set interface boolean added = super.add(el); if (added) notifyElementAdded (el); return added; }}
Item 68: Prefer Executors and Tasks to Threads • Old key abstraction: Thread • Unit of work and • Mechanism for execution • New key abstractions: • Task (Unit of work) • Runnable and Callable • Mechanism for execution • Executor Service • Start tasks, wait on particular tasks, etc. • See Bloch for references
Item 69: Prefer Concurrency Utilities to wait and notify • wait() and notify() are complex • Java concurrency facilities much better • Legacy code still requires understanding low level primitives • Three mechanisms • Executor Framework (Item 68) • Concurrent collections • Internally synchronized versions of Collection classes • Extensions for blocking, Example: BlockingQueue • Synchronizers • Objects that allow Threads to wait for one another
More Item 69: Timing Example // Simple framework for timing concurrent execution public static long time (Executor executor, int concurrency, final Runnable action) throws InterrruptedExecution { final CountDownLatch ready = new CountDownLatch(concurrency); final CountDownLatch start = new CountDownLatch(1); final CountDownLatch done = new CountDownLatch(concurrency); for (int i=0; i< concurrency; i++) { executor.execute (new Runnable() { public void run() { ready.countDown(); // Tell Timer we’re ready try { start.await(); action.run(); // Wait till peers are ready } catch (...){ ...} } finally { done.countDown(); }} // Tell Timer we’re done });} ready.await(); // Wait for all workers to be ready long startNanos = System.nanoTime(); start.countDown(); // And they’re off! done.await() // Wait for all workers to finish return System.nanoTime() – startNanos; }
Item 70: Document Thread Safety • Levels of Thread safety • Immutable: • Instances of class appear constant • Example: String • Unconditionally thread-safe • Instances of class are mutable, but is internally synchronized • Example: ConcurrentHashMap • Conditionally thread-safe • Some methods require external synchronization • Example: Collections.synchronized wrappers • Not thread-safe • Client responsible for synchronization • Examples: Collection classes • Thread hostile: Not to be emulated!
More Item 70: Example //Use Conditionally Thread-Safe Collections.synchronized wrapper Map<K,V> m = Collections.synchronizedMap(new HashMap(K,V)()); ... Set<K> s = m.keySet(); // View needn’t be in synchronized block ... synchronized (m) { // Synchronizing on m, not s! for (K key : s ) key.f(); // call f() on each key // Documentation in Collections.synchronizedMap: // “It is imperative that the user manually synchronize on the // returned map when iterating over any of the collection views.” Note that clients can (accidentally or intentionally) mount denial-of-service attacks on other users of m by synchronizing on m and then holding the lock. Private lock idiom thwarts this.
Item 71: Use Lazy Initialization Judiciously • Under most circumstances, normal initialization is preferred // Normal initialization of an instance field private final FieldType field = computeFieldValue(); // Lazy initialization of instance field – synchronized accessor private FieldType field; synchronized FieldType getField() { if (field == null) field = computeFieldValue(); return field; }
More Item 71: Double Check Lazy Initialization // Double-check idiom for lazy initialization of instance fields private volatile FieldType field; // volatile key – see Item 66 FieldType getField() { FieldType result = field; if (result == null) { // check with no locking synchronized (this) { result = field; if (result == null) // Second check with a lock field = result = computeFieldValue(); } } return result; }
Item 72: Don’t Depend on the Thread Scheduler • Any program that relies on the thread scheduler is likely to be unportable • Threads should not busy-wait • Use concurrency facilities instead (Item 69) • Don’t “Fix” slow code with Thread.yield calls • Restructure instead • Avoid Thread priorities
Item 73: Avoid Thread Groups • Thread groups originally envisioned as a mechanism for isolating Applets for security purposes • Unfortunately, doesn’t really work