170 likes | 250 Views
电阻.
E N D
电阻 用电阻材料制成的、有一定结构形式、能在电路中起限制电流通过作用的二端电子元件。阻值不能改变的称为固 定电阻器。阻值可变的称为电位器或可变电阻器。理想的电阻器是线性的,即通过电阻器的瞬时电流与外加瞬时电压成正比。一些特殊电阻器,如热敏电阻器、压敏电阻器和敏感元件,其电压与电流的关系是非线性的。电阻器是电子电路中应用数量最多的元件,通常按功率和阻值形成不同系列,供电路设计者选用。 电阻器在电路中主要用来调节和稳定电流与电压,可作为分流器和分压器,也可作电路匹配负载。根据电路要求,还可用于放大电路的负反馈或正反馈、电压-电流转换、输入过载时的电压或电流保护元件,又可组成RC电路作为振荡、滤波、旁路、微分、积分和时间常数元件等
小功率电阻器通常为封装在塑料外壳中的碳膜构成,而大功率的电阻器通常为绕线电阻器,通过将大电阻率的金属丝绕在瓷心上而制成。小功率电阻器通常为封装在塑料外壳中的碳膜构成,而大功率的电阻器通常为绕线电阻器,通过将大电阻率的金属丝绕在瓷心上而制成。 • 如果一个电阻器的电阻值接近零欧姆(例如,两个点之间的大截面导线),则该电阻器对电流没有阻碍作用,串接这种电阻器的回路被短路,电流无限大。如果一个电阻器具有无限大的或很大的电阻,则串接该电阻器的回路可看作开路,电流为零。工业中常用的电阻器介于两种极端情况之间,它具有一定的电阻,可通过一定的电流,但电流不像短路时那样大。电阻器的限流作用类似于接在两根大直径管子之间的小直径管子限制水流量的作用。电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母“Ω”表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。电阻的主要职能就是阻碍电流流过。事实上,“电阻”说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。欧姆常简称为欧。表示电阻阻值的常用单位还有千欧(kΩ),兆欧(MΩ),毫欧(m Ω)
电阻器由电阻体、骨架和引出端三部分构成(实芯电阻器的电阻体与骨架合二为一),而决定阻值的只是电阻体。对于截面均匀的电阻体,电阻值为电阻器由电阻体、骨架和引出端三部分构成(实芯电阻器的电阻体与骨架合二为一),而决定阻值的只是电阻体。对于截面均匀的电阻体,电阻值为 • 电阻值 • 式中ρ为电阻材料的电阻率(欧·厘米);L为电阻体的长度(厘米);A为电阻体的截面积(平方厘米)。 • 薄膜电阻体的厚度d很小,难于测准,且ρ又随厚度而变化,故把视为与薄膜材料有关的常数,称为膜电阻。实际上它就是正方形薄膜的阻值,故又称方阻(欧/方)。对于均匀薄膜 • 薄膜阻值 • 式中W为薄膜的宽度(厘米)。通常Rs应在一有限范围内,Rs太大会影响电阻器性能的稳定。因此圆柱形电阻体以刻槽方法,平面形电阻体用刻蚀迂回图形的方法来扩大其阻值范围,并进行阻值微调。 • 参数与特性 表征电阻特性的主要参数有标称阻值及其允许偏差、额定功率、负荷特性、电阻温度系数等。 • 标称阻值 用数字或色标在电阻器上标志的设计阻值。单位为欧(Ω)、千欧(kΩ)、兆欧(MΩ)、太欧(TΩ)。阻值按标准化优先数系列制造,系列数对应于允许偏差。
电阻器按材料分类 • a、线绕电阻器由电阻线绕成电阻器 用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。 • b、碳合成电阻器由碳及合成塑胶压制成而成。 • c、碳膜电阻器在瓷管上镀上一层碳而成,将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。 • d、金属膜电阻器在瓷管上镀上一层金属而成,用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。 • 金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数小。在仪器仪表及通讯设备中大量采用。 • e、金属氧化膜电阻器在瓷管上镀上一层氧化锡而成,在绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强 按用途分,有通用、精密、高频、高压、高阻、大功率和电阻网络等。
应用 • 不同的使用场合,应用压敏电阻的目的,作用在压敏电阻上的电压/电流应力并不相同,因而对压敏电阻的要求也不相同,注意区分这种差异,对于正确使用是十分重要的。根据使用目的的不同,可将压敏电阻区分为两大类:保护用压敏电阻,电路功能用压敏电阻。 • 保护用压敏电阻 • 1、区分电源保护用,还是信号线,数据线保护用压敏电阻器,它们要满足不同的技术标准的要求。 • 电位器 • 2、根据施加在压敏电阻上的连续工作电压的不同,可将跨电源线用压敏电阻器可区分为交流用或直流用两种类型,压敏电阻在这两种电压应力下的老化特性表现不同。 • 3、根据压敏电阻承受的异常过电压特性的不同,可将压敏电阻区分为浪涌抑制型,高功率型和高能型这三种类型。 • 浪涌抑制型:是指用于抑制雷电过电压和操作过电压等瞬态过电压的压敏电阻器,这种瞬态过电压的出现是随机的,非周期的,电流电压的峰值可能很大。绝大多数压敏电阻器都属于这一类。 • 高功率型:是指用于吸收周期出现的连续脉冲群的压敏电阻器,例如并接在开关电源变换器上的压敏电阻,这里冲击电压周期出现,且周期可知,能量值一般可以计算出来, • 压敏电阻器 • 电压的峰值并不大,但因出现频率高,其平均功率相当大。 • 高能型:指用于吸收发电机励磁线圈,起重电磁铁线圈等大型电感线圈中的磁能的压敏电压器,对这类应用,主要技术指标是能量吸收能力。 • 压敏电阻器的保护功能,绝大多数应用场合下,是可以多次反复作用的,但有时也将它做成电流保险丝那样的一次性保护器件。例如并接在某些电流互感器负载上的带短路接点压敏电阻。
电感 • 电感器(Inductor)是能够把电能转化为磁能而存储起来的元件。电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。电感器又称扼流器、电抗器、动态电抗器
自感 • 当线圈中有电流通过时候,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。 • 互感 • 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。 自感 互感
电感器用绝缘导线绕制的各种线圈称为电感。用导线绕成一匝或多匝以产生一定自感量的电子元件,常称电感线圈或简称线圈。为了增加电感量、提高Q值并缩小体积,常在线圈中插入磁芯。在高频电子设备中,印制电路板上一段特殊形状的铜皮也可以构成一个电感器,通常把这种电感器称为印制电感或微带线。在电子设备中,经常可以看到有许多磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈),它是电子电路中常用的抗干扰元件,对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)。最原始的电感器是1831年英国M.法拉第用以发现电磁感应现象的铁芯线圈。1832年美国的J.亨利发表关于自感应现象的论文。人们把电感量的单位称为亨利,简称亨。19世纪中期,电感器在电报、电话等装置中得到实际应用。1887年德国的H.R.赫兹,1890年美国N.特斯拉在实验中所用的电感器都是非常著名的,分别称为赫兹线圈和特斯拉线圈。电感器用绝缘导线绕制的各种线圈称为电感。用导线绕成一匝或多匝以产生一定自感量的电子元件,常称电感线圈或简称线圈。为了增加电感量、提高Q值并缩小体积,常在线圈中插入磁芯。在高频电子设备中,印制电路板上一段特殊形状的铜皮也可以构成一个电感器,通常把这种电感器称为印制电感或微带线。在电子设备中,经常可以看到有许多磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈),它是电子电路中常用的抗干扰元件,对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)。最原始的电感器是1831年英国M.法拉第用以发现电磁感应现象的铁芯线圈。1832年美国的J.亨利发表关于自感应现象的论文。人们把电感量的单位称为亨利,简称亨。19世纪中期,电感器在电报、电话等装置中得到实际应用。1887年德国的H.R.赫兹,1890年美国N.特斯拉在实验中所用的电感器都是非常著名的,分别称为赫兹线圈和特斯拉线圈。 • 电感可由电导材料盘绕磁芯制成,典型的如铜线, • 也可把磁芯去掉或者用铁磁性材料代替。比空气的磁导率高的芯材料可以把磁场更紧密的约束在电感元件周围,因而增大了电感。电感有很多种,大多以外层瓷釉线圈(enamel coated wire )环绕铁素体(ferrite)线轴制成,而有些防护电感把线圈完全置于铁素体内。一些电感元件的芯可以调节。由此可以改变电感大小。小电感能直接蚀刻在PCB板上,用一种铺设螺旋轨迹的方法。小值电感也可用以制造晶体管同样的工艺制造在集成电路中。在这些应用中,铝互连线被经常用做传导材料。不管用何种方法,基于实际的约束应用最多的还是一种叫做“旋转子”的电路,它用一个电容和主动元件表现出与电感元件相同的特性。用于隔高频的电感元件经常用一根穿过磁柱或磁珠的金属丝构成。
常见种类 • 小型固定电感器 • 小型固定电感器通常是用漆包线在磁芯上直接绕制而成, • 主要用在滤波、振荡、陷波、延迟等电路中,它有密封式和非密封式两种封装形式,两种形式又都有立式和卧式两种外形结构。 • 1、立式密封固定电感器 立式密封固定电感器采用同向型引脚,国产电感量范围为0.1~2200μH(直标在外壳上),额定工作电流为0.05~1.6A,误差范围为±5%~±10%,进口的电感量,电流量范围更大,误差则更小。进口有TDK系列色码电感器,其电感量用色点标在电感器表面。 • 2、卧式密封固定电感器 卧式密封固定电感器采用轴向型引脚,国产有LG1.LGA、LGX等系列。 • LG1系列电感器的电感量范围为0.1~22000μH(直标在外壳上) • LGA系列电感器采用超小型结构,外形与1/2W色环电阻器相似,其电感量范围为0.22~100μH(用色环标在外壳上),额定电流为0.09~0.4A。 • LGX系列色码电感器也为小型封装结构,其电感量范围为0.1~10000μH,额定电流分为50mA、150mA、300mA和1.6A四种规格。 • 可调电感器 • 常用的可调电感器有半导体收音机用振荡线圈、电视机用行振荡线圈、 • 行线性线圈、中频陷波线圈、音响用频率补偿线圈、阻波线圈等。 • 1、半导体收音机用振荡线圈:此振荡线圈在半导体收音机中与可变电容器等组成本机振荡电路,用来产生一个输入调谐电路接收的电台信号高出465kHz的本振信号。其外部为金属屏蔽罩,内部由尼龙衬架、工字形磁心、磁帽及引脚座等构成,在工字磁心上有用高强度漆包线绕制的绕组。磁帽装在屏蔽罩内的尼龙架上,可以上下旋转动,通过改变它与线圈的距离来改变线圈的电感量。电视机中频陷波线圈的内部结构与振荡线圈相似,只是磁帽可调磁心。 • 2、电视机用行振荡线圈:行振荡线圈用在早期的黑白电视机中,它与外围的阻容元件及行振荡晶体管等组成自激振荡电路(三点式振荡器或间歇振荡器、多谐振荡器),用来产生频率为15625HZ的的矩形脉冲电压信号。 • 该线圈的磁心中心有方孔,行同步调节旋钮直接插入方孔内,旋动行同步调节旋钮,即可改变磁心与线圈之间的相对距离,从而改变线圈的电感量,使行振荡频率保持为15625HZ,与自动频率控制电路(AFC)送入的行同步脉冲产生同步振荡。 • 3、行线性线圈:行线性线圈是一种非线性磁饱和电感线圈(其电感量随着电流的增大而减小),它一般串联在行偏转线圈回路中,利用其磁饱和特性来补偿图像的线性畸变。 • 行线性线圈是用漆包线在"工"字型铁氧体高频磁心或铁氧体磁棒上绕制而成,线圈的旁边装有可调节的永久磁铁。通过改变永久磁铁与线圈的相对位置来改变线圈电感量的大小,从而达到线性补偿的目的。 • 阻流电感器 • 阻流电感器是指在电路中用以阻塞交流电流通路的电感线圈, • 它分为高频阻流线圈和低频阻流线圈。 • 1、高频阻流线圈:高频阻流线圈也称高频扼流线圈,它用来阻止高频交流电流通过。 • 高频阻流线圈工作在高频电路中,多用采空心或铁氧体高频磁心,骨架用陶瓷材料或塑料制成,线圈采用蜂房式分段绕制或多层平绕分段绕制。 • 2、低频阻流线圈:低频阻流线圈也称低频扼流圈,它应用于电流电路、音频电路或场输出等电路,其作用是阻止低频交流电流通过。 • 通常,将用在音频电路中的低频阻流线圈称为音频阻流圈,将用在场输出电路中的低频阻流线圈称为场阻流圈,将用在电流滤波电路中的低频阻流线圈称为滤波阻流圈。 • 低频阻流圈一般采用“E”形硅钢片铁心(俗称矽钢片铁心)、坡莫合金铁心或铁淦氧磁心。为防止通过较大直流电流引起磁饱和,安装时在铁心中要留有适当空隙
功能用途编辑 • 电感器在电路中主要起到滤波、振荡、延迟、陷波等作用,还有筛选信号、过滤噪声、稳定电流及抑制电磁波干扰等作用。电感在电路最常见的作用就是与电容一起,组成LC滤波电路。电容具有“阻直流,通交流”的特性,而电感则有“通直流,阻交流”的功能。如果把伴有许多干扰信号的直流电通过LC滤波电路,那么,交流干扰信号将被电感变成热能消耗掉;变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 • 电感器具有阻止交流电通过而让直流电顺利通过的特性,频率越高,线圈阻抗越大。因此,电感器的主要功能是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路
计算公式 • 电感量按下式计算: • 线圈公式: • 阻抗(ohm)=2 * 3.14159 * F(工作频率)* 电感量(mH),设定需用360ohm 阻抗,因此: • 电感量(mH)=阻抗(ohm)÷(2*3.14159)÷ F(工作频率)=360÷(2*3.14159)÷ 7.06=8.116mH • 据此可以算出绕线圈数: • 圈数=[电感量* { (18*圈直径(吋))+(40 * 圈长(吋))}] ÷ 圈直径(吋) • 圈数=[8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 • 空心电感计算公式 • 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) • D——线圈直径 • N——线圈匝数 • d——线径 • H——线圈高度 • W——线圈宽度 • 单位分别为毫米和mH。 • 空心线圈电感量计算公式: • l=(0.01*D*N*N)/(L/D+0.44) • 线圈电感量:l,单位:微亨 • 线圈直径:D,单位:cm • 线圈匝数:N,单位:匝 • 线圈长度:L,单位:cm • 频率电感电容计算公式: • l=25330.3/[(f0*f0)*c] • 工作频率:f0单位:MHZ 本题f0=125KHZ=0.125 • 谐振电容:c单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q • 值决定 • 谐振电感:l 单位:微亨 • 线圈电感的计算公式 • 1、针对环行CORE,有以下公式可利用:(IRON) • L=N2.AL L= 电感值(H) • H-DC=0.4πNI / l N= 线圈匝数(圈) • AL= 感应系数 • H-DC=直流磁化力 I= 通过电流(A) • l= 磁路长度(cm) • l及AL值大小,可参照Micrometal对照表。例如:以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH • L=33(5.5)2=998.25nH≒1μH • 当流过10A电流时,其L值变化可由l=3.74(查表) • H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) • 即可了解L值下降程度(μi%) • 2、介绍一个经验公式 • L=(k*μ0*μs*N2*S)/l • 其中 • μ0 为真空磁导率=4π*10(-7)。(10的负七次方) • μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1 • N2 为线圈圈数的平方 • S 线圈的截面积,单位为平方米 • l 线圈的长度, 单位为米 • k 系数,取决于线圈的半径(R)与长度(l)的比值。 • 计算出的电感量的单位为亨利(H)。
电容 • 电容器,通常简称其容纳电荷的本领为电容,用字母C表示。定义1:电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。英文名称:capacitor。电容器是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路, 能量转换,控制等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 • 电容与电容器不同。电容为基本物理量,符号C,单位为F(法拉)
通用公式C=Q/U平行板电容器专用公式:板间电场强度E=U/d ,电容器电容决定式 C=εS/4πkd • 随着电子信息技术的日新月异,数码电子产品的更新换代速度越来越快,以平板电视(LCD和PDP)、笔记本电脑、数码相机等产品为主的消费类电子产品产销量持续增长,带动了电容器产业增长。并带动了相关材料、设备行业的发展,中国已经成为全球电容器生产大国。
作用 • 在直流电路中,电容器是相当于断路的。电容器是一种能够储藏电荷的元件,也是最常用的电子元件之一。 • 这得从电容器的结构上说起。最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个电容器是不导电的。不过,这样的情况是在没有超过电容器的临界电压(击穿电压)的前提条件下的。我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。电容也不例外,电容被击穿后,就不是绝缘体了。不过在中学阶段,这样的电压在电路中是见不到的,所以都是在击穿电压以下工作的,可以被当做绝缘体看。 • 但是,在交流电路中,因为电流的方向是随时间成一定的函数关系变化的。而电容器充放电的过程是有时间的,这个时候,在极板间形成变化的电场,而这个电场也是随时间变化的函数。实际上,电流是通过电场的形式在电容器间通过的。 • 在中学阶段,有句话,就叫通交流,隔直流,说的就是电容的这个性质。 • 电容的作用: • 1)旁路 • 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地电位是地连接处在通过大电流毛刺时的电压降。 • 2)去耦 • 去耦,又称解耦。从电路来说, 总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大, 驱动电路要把电容充电、放电, 才能完成信号的跳变,在上升沿比较陡峭的时候, 电流比较大, 这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感)会产生反弹,这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。 • 去耦电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰,在电路中进一步减小电源与参考地之间的高频干扰阻抗。 • 将旁路电容和去耦电容结合起来将更容易理解。旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提供一条低阻抗泄放途径。高频旁路电容一般比较小,根据谐振频率一般取0.1μF、0.01μF 等;而去耦合电容的容量一般较大,可能是10μF 或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。 • 3)滤波 • 从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1μF 的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容滤低频,小电容滤高频。电容的作用就是通高阻低,通高频阻低频。电容越大高频越容易通过。具体用在滤波中,大电容(1000μF)滤低频,小电容(20pF)滤高频。曾有网友形象地将滤波电容比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。 • 4)储能 • 储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150 000μF 之间的铝电解电容器是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式, 对于功率级超过10KW 的电源,通常采用体积较大的罐形螺旋端子电容器
分类 • 根据分析统计,电容器主要分为以下10类: • 1.按照结构分三大类:固定电容器、可变电容器和微调电容器。 • 2.按电解质分类:有机介质电容器、无机介质电容器、电解电容器、电热电容器和空气介质电容器等。 • 3、按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器。 • 4.按制造材料的不同可以分为:瓷介电容、涤纶电容、电解电容、钽电容,还有先进的聚丙烯电容等等 • 5.高频旁路:陶瓷电容器、云母电容器、玻璃膜电容器、涤纶电容器、玻璃釉电容器。 • 6.低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器。 • 7、滤波:铝电解电容器、纸介电容器、复合纸介电容器、液体钽电容器。 • 8.调谐:陶瓷电容器、云母电容器、玻璃膜电容器、聚苯乙烯电容器。 • 9.低耦合:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器、固体钽电容器。 • 10.小型电容:金属化纸介电容器、陶瓷电容器、铝电解电容器、聚苯乙烯电容器、固体钽电容器、玻璃釉电容器、金属化涤纶电容器、聚丙烯电容器、云母电容器
充放电 • 当电容器接通电源以后,在电场力的作用下,与电源正极相接电容器极板的 自由电子将经过电源移到与电源负极相接的极板下, 正极由于失去负电荷而带正电, 负 极由于获得负电荷而带负电,正,负极板所带电荷大小相等,符号相反.电荷定 向移动形成电流,由于同性电荷的排斥作用,所以开始电流最大,以后逐渐减小,在电 荷移动过程中,电容器极板储存的电荷不断增加,电容器两极板间电压 Uc 等于电源电 压 U 时电荷停止移动,电流 I=0,开关闭合,通过导线的连接作用,电容器正负极板电荷中和掉. 当 K 闭合时,电容器 C 正极正电荷可以移动 负极上中和掉,负极负电荷也可以移到正极中和掉,电荷逐渐减少,表现电流减小,电压也逐渐减小为零.
容量 • 电容器既然是一种储存电荷的“容器”,就有“容量”大小的问题。为了衡量电容器储存电荷的能力,确定了电容量这个物理量。电容器必须在外加电压的作用下才能储存电荷。不同的电容器在电压作用下储存的电荷量也可能不相同。国际上统一规定,给电容器外加1伏特直流电压时,它所能储存的电荷量,为该电容器的电容量(即单位电压下的电量),用字母C表示。电容量的基本单位为法拉(F)。在1伏特直流电压作用下,如果电容器储存的电荷为1库仑,电容量就被定为1法拉,法拉用符号F表示。在实际应用中,电容器的电容量往往比1法拉小得多,常用较小的单位,如微法(μF)、皮法(pF)等,它们的关系是:1微法等于百万分之一法拉;1皮法等于百万分之一微法,[1] 即 • 1法拉(F)=1000000微法(μF) • 1微法(μF)=1000000皮法(pF)