370 likes | 492 Views
MITSUBISHI ELECTRIC. Changes for the better. Rotation and Translation Mechanisms for Tabletop Interaction. Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen.
E N D
MITSUBISHI ELECTRIC Changes for the better Rotation and TranslationMechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen
Rotation and translation techniquescan be better understood by comparing thedegrees of freedoms of input to output
Motivation Back-Country (Telemark) Downhill
Motivation • Downhill bindings • Attached at rear • Telemark bindings • Free at rear
Degrees of Freedom The minimum number of independent variables that describes the possible movement in a system.
Degrees of Freedom • Input (physical movement): • Single-point or multi-point (per person) • 2D surface or physical 3D space • Output (virtual movement): • Position (2D) • Angle (1D)
Explicit Specification • Input • x, y, θ, etc. • 1 DOF • Output • x, y, θ, etc. • 1 DOF • Input DOF = Output DOF
Independent Translation • Input • x & y • 2 DOF • Output • x & y • 2 DOF • Input DOF = Output DOF
Independent Rotation • Input • x & y • 2 DOF • Output • θ • 1 DOF • Input DOF > Output DOF
Automatic Orientation • Input • x & y • 2 DOF • Output • r, θ • 2 DOF • Input DOF = Output DOF
Integral Rotation & Translation • Input • x & y • 2 DOF • Output • x, y, & θ • 3 DOF • Input DOF < Output DOF
Two-Point Rotation & Translation • Input • x1, y1, x2, y2 • 4 DOF • Output • x, y, θ • 3 DOF • Input DOF > Output DOF
Degrees of Freedom Explicit Specification Independent Translation Automatic Orientation 1DOF → 1DOF 2DOF → 2DOF 2DOF → 2DOF Independent Rotation 2-Point Integrated 2DOF → 1DOF 4DOF → 3DOF 2DOF → 3DOF
Coordination & Communication • Use rotation & translation to communicate • Must support both: • Need all 3 DOF output
Coordination & Communication Communication-Friendly Communication-Unfriendly
Consistency • Consistent • Output = f(Input) • Output DOF ≤ Input DOF • Inconsistent • Output ≠ f(Input) • Output DOF > Input DOF:
Consistency Inconsistent Consistent
Completeness • Complete • Output DOF ≥ Entire space • Incomplete • Output DOF < Entire space
Completeness Complete Incomplete
GUI Integration • Restricted Areas • Input DOF = Output DOF • Works!
GUI Integration Input DOF > Output DOF (Difficult to constrain) Input DOF < Output DOF (Larger area desirable)
Role of Snapping • Input DOF > Output DOF • e.g. Ruler: 2DOF Input, 1DOF Output • e.g. Independent Rotation, 2-Point
Role of Snapping • Snap to polar-grid • Snap to rectilinear grid • Snap to one another • Snap: • Position • Orientation • Both
Design Questions • What DOF of output is necessary? • What DOF of input is available? • How can the input DOF be mapped to the output DOF? • If the mapping involves a change in DOF, how will this affect interaction?
Conclusion • Downhill bindings • Less DOF input • Good for downhill • Telemark bindings • More DOF input • Good for uphill climbs
Conclusion Alpine Touring (AT) Bindings
Rotation and translation techniquescan be better understood by comparing thedegrees of freedoms of input to output
Thank you! Mark S. Hancock (msh@cs.ucalgary.ca) Frédéric D. Vernier (frederic.vernier@limsi.fr) Daniel Wigdor (dwigdor@dgp.toronto.edu) Sheelagh Carpendale (sheelagh@cpsc.ucalgary.ca) Chia Shen (shen@merl.com)