1 / 14

Clase 117

Clase 117. Ecuaciones logarítmicas. Revisión del estudio individual. Ejercicio 6 ( e, q , h, k) pág. 13 L.T. Onceno grado. Comprobación:. e) log 5 (6x – 1 ) = 1. 1= 1. M.I: log 5 (6·1– 1). 6x – 1 = 5 1. x = 1. log 5 5 = 1.

oakley
Download Presentation

Clase 117

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clase 117 Ecuaciones logarítmicas

  2. Revisión del estudio individual Ejercicio 6 (e, q, h, k) pág. 13 L.T. Onceno grado Comprobación: e) log5(6x – 1 ) = 1 1= 1 M.I: log5(6·1– 1) 6x – 1= 51 x = 1 log5 5 = 1 Si logab = logac entonces b=c q) log3( –x2 + 5x) = log36 (b > 0, c > 0 a > 0, a  1) –x2 + 5x = 6 x2 – 5x + 6 = 0

  3. x2 – 5x + 6 = 0 x1= 3; x2= 2 (x – 3)(x – 2) = 0 Comprobación: Parax1= 3 M.I:log3( –x2 + 5x) = log3 –(3)2+5(3) = log3 (– 9+15) = log3 6 M.D: log3 6 Parax2 = 2 M.I:log3( –x2 + 5x) = log3 –(2)2+5(2) = log3 6 = log3 (– 4+10)

  4. logab = x si y solo si ax= b logab (a > 0, a  1, b > 0) x a = b Identidad fundamental logarítmica Si logab = logac entonces b=c (b > 0, c > 0 a > 0, a  1) loga1= 0 logaa = 1

  5. 3 2 log (x –x –x+2)= x b) 2 log x x 2 log (6x –7x+5) = 3 2 Ejercicio 1 Halla el conjunto solución de las siguientes ecuaciones logarítmicas: a) log52 c) log6– x x = 5

  6. 1 x1 = 3 2 log (6x –7x+5) = 3 3 x2 = 2 2 a) 6x2 –7x + 5 = 23 6x2 –7x + 5–8= 0 6x2 –7x –3= 0 (3x+1)(2x – 3)= 0 3 1 2 – 3 – 9 + 2= –7

  7. 2 1 1 – – log26 –7 + 5 3 3 1 7 = log26 + 5 + 9 3 7 2 = log2 +5 + 2 3 3 log (6x –7x+5) 2 Comprobación: 1 x1 = M.I: 3 M.D: 3 = log28 = 3

  8. 2 3 3 log26· –7 +5 2 2 3 2 1 3 2 S={ ;} log (6x –7x+5) 3 x2 = 2 2 Comprobación: M:I: = log2 ( 6·2,25–10,5 + 5) = log2 ( 13,5–10,5 + 5) = log2 8 = 3 M.D: 3

  9. 3 2 log (x –x –x+2)= x b) 2 log x x x3 – x2 – x + 2 = x2 x3 – 2x2 – x + 2 = 0 (x – 1)(x+1)(x – 2) = 0 Posibles raíces 1 – 2 – 1 2 x1= 1 x>0 N.S. indefine los logaritmos 1 1 – 1 – 2 x2= – 1 x1 1 – 1 – 2 0 x3 = 2

  10. 3 2 log (x –x –x+2)= x log (23– 22 –2 + 2) b) 2 2 log x x Comprobación: Para x = 2 3 2 M.I: log (x – x – x + 2) x = log24= 2 logxx2 log222 = log2 4= 2 M.D: S= {2} M.I = M.D

  11. loga b a = b log52 c) log6– x x = 5 log6– x x = 2 x = (6 – x )2 x = 36 – 12x + x2 0 = 36 – 13x + x2 (x – 9)(x –4) = 0 Indefine el logaritmo x1 = 9 ó x2 = 4 S= {4} Comp: x2 = 4 M.I: log6 – 4 4 = log24 = 2 M.D: 2

  12. log3( 2x –  x – 7) = log33  2x –  x – 7 = 3  2x – 3 =  x – 7 2x – 6 2x + 9 = x – 7 x + 16 = 6 2x Ejercicio 2: Para qué valores de x , se cumple que: 2 2

  13. 2 x + 16 = 6 2x 2 x2+ 32x+ 256 = 36(2x) x2+ 32x+ 256 = 72x x2 – 40x+ 256 = 0 (x – 32)(x – 8) = 0 x1= 32 ó x2= 8 Posibles soluciones ¡compruébalas!

  14. 1 – x2 f(x) = x2 Para el estudio individual 1. Sean las funciones: ; g(x) = sen x a) Halle de la forma más simple posible fog(x).. b) ¿Para qué valores de x está definida esta compuesta? 2. Ejercicio 7, incisos (a,b,k,l) página 14 del L.T de 11nogrado.

More Related