1 / 16

Tracking Calculations for the LHC Upgrade - Collision Optics -

Tracking Calculations for the LHC Upgrade - Collision Optics -. Bernhard Holzer, CERN BE-ABP and many colleagues !!!. LHC Standard Collision Optics ... and the Upgrade. Q4. Q5.

oded
Download Presentation

Tracking Calculations for the LHC Upgrade - Collision Optics -

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tracking Calculations for the LHC Upgrade - Collision Optics - Bernhard Holzer, CERN BE-ABP and many colleagues !!! LHC Standard Collision Optics ... and the Upgrade Q4 Q5 critical issues for the DA ??? error tables ... at the triplett ? ... at the new D1 ? ... at the matching section ? and which multipoles?

  2. Problem: multipole coefficients from Q1, Q2, Q3 & D1 ... and beyond ?? how many multipole correctors do we need ?

  3. LHC - Upgrade error table for the new MQXC triplett quadrupole " ITD1_error table_V1"

  4. col_9 horizonal detuning with amplitude vertical detuning with amplitude 0.01 0.01 0 0 -0.01 -0.01 10 0 initial amplitude 10 0 initial amplitude " the worst case" triplett errors on D1 errors on no correction

  5. col_9 " the worst case" triplett errors on D1 errors on no correction below 6 sigma !!

  6. col_1_2 " problem Nr. 1" triplett errors on, corrected via b3 / b6 D1 errors on D1 errors off D1 errors off D1 errors on ... the D1 is a problem of its own

  7. col_2_5_6 " problem Nr. 2" triplett errors correction D1 errors off D1 errors off b3 on, b6 on D1 errors off b3, b6 off D1 errors off b3 on, b6 off col_2_5_8 D1 errors off b3,a3,b4,a4,b6 on D1 errors off b3, b6 on D1 errors off b3, b6 off ... we need much more than b3, b6 !!!

  8. " problem Nr. 3 ? ... a non-problem" triplett errors correction via a3,b3,a4,b4,b6 matching quads Q4 ... Q7 ? higher order multipoles ( > 11) D1 errors off a3,b3,a4,b4, b6 on errors Q4 ... Q7 off a3,b3,a4,b4, b6 on errors Q4 ... Q7 on a3,b3,a4,b4, b6 on multipoles ≤ 11 ... two non- problems: multipoles > 11 the matching quads Q4... Q7

  9. beta beat comp & beam screen D1 errors off beat beat comp. on * beat beat comp. off beam screen contribution .... negligible bs off / bs on

  10. scaling multipole errors: Based on Q2 Magnet ! ----------------------------------------------------------------------- ! ********Magnet type : MQXC/MQXD (new Inner Triplet Quad)*************** ! ----------------------------------------------------------------------- bn in collision b1M_MQXCD_col := 0.0000 ; b1U_MQXCD_col := 0.0000 ; b1R_MQXCD_col := 0.0000 ; b2M_MQXCD_col := 0.0000 ; b2U_MQXCD_col := 0.0000 ; b2R_MQXCD_col := 0.0000 ; b3M_MQXCD_col := 0.0000 ; b3U_MQXCD_col := 0.4600 ; b3R_MQXCD_col := 0.8900 ; b4M_MQXCD_col := 0.0000 ; b4U_MQXCD_col := 0.6400 ; b4R_MQXCD_col := 0.6400 ; b5M_MQXCD_col := 0.0000 ; b5U_MQXCD_col := 0.4600 ; b5R_MQXCD_col := 0.4600 ; b6M_MQXCD_col := 0.0000 ; b6U_MQXCD_col := 1.7700 ; b6R_MQXCD_col := 1.2800 ; b7M_MQXCD_col := 0.0000 ; b7U_MQXCD_col := 0.2100 ; b7R_MQXCD_col := 0.2100 ; b8M_MQXCD_col := 0.0000 ; b8U_MQXCD_col := 0.1600 ; b8R_MQXCD_col := 0.1600 ; b9M_MQXCD_col := 0.0000 ; b9U_MQXCD_col := 0.0800 ; b9R_MQXCD_col := 0.0800 ; b10M_MQXCD_col := 0.0000 ; b10U_MQXCD_col := 0.2000 ; b10R_MQXCD_col := 0.0600 ; b11M_MQXCD_col := 0.0000 ; b11U_MQXCD_col := 0.0300 ; b11R_MQXCD_col := 0.0300 ; b12M_MQXCD_col := 0.0000 ; b12U_MQXCD_col := 0.0200 ; b12R_MQXCD_col := 0.0200 ; b13M_MQXCD_col := 0.0000 ; b13U_MQXCD_col := 0.0200 ; b13R_MQXCD_col := 0.0100 ; b14M_MQXCD_col := 0.0000 ; b14U_MQXCD_col := 0.0400 ; b14R_MQXCD_col := 0.0100 ; b15M_MQXCD_col := 0.0000 ; b15U_MQXCD_col := 0.0000 ; b15R_MQXCD_col := 0.0000 ; effect of multipole on beam: Error-Table: ~.V2 scaling via aperture radius r =17mm → r = 40mm scaling via optics ! an in collision a1M_MQXCD_col := 0.0000 ; a1U_MQXCD_col := 0.0000 ; a1R_MQXCD_col := 0.0000 ; a2M_MQXCD_col := 0.0000 ; a2U_MQXCD_col := 0.0000 ; a2R_MQXCD_col := 0.0000 ; a3M_MQXCD_col := 0.0000 ; a3U_MQXCD_col := 0.8900 ; a3R_MQXCD_col := 0.8900 ; a4M_MQXCD_col := 0.0000 ; a4U_MQXCD_col := 0.6400 ; a4R_MQXCD_col := 0.6400 ; a5M_MQXCD_col := 0.0000 ; a5U_MQXCD_col := 0.4600 ; a5R_MQXCD_col := 0.4600 ; a6M_MQXCD_col := 0.0000 ; a6U_MQXCD_col := 1.2700 ; a6R_MQXCD_col := 0.3300 ; a7M_MQXCD_col := 0.0000 ; a7U_MQXCD_col := 0.2100 ; a7R_MQXCD_col := 0.2100 ; a8M_MQXCD_col := 0.0000 ; a8U_MQXCD_col := 0.1600 ; a8R_MQXCD_col := 0.1600 ; a9M_MQXCD_col := 0.0000 ; a9U_MQXCD_col := 0.0800 ; a9R_MQXCD_col := 0.0800 ; a10M_MQXCD_col := 0.0000 ; a10U_MQXCD_col := 0.1400 ; a10R_MQXCD_col := 0.0600 ; a11M_MQXCD_col := 0.0000 ; a11U_MQXCD_col := 0.0300 ; a11R_MQXCD_col := 0.0300 ; a12M_MQXCD_col := 0.0000 ; a12U_MQXCD_col := 0.0200 ; a12R_MQXCD_col := 0.0200 ; a13M_MQXCD_col := 0.0000 ; a13U_MQXCD_col := 0.0100 ; a13R_MQXCD_col := 0.0100 ; a14M_MQXCD_col := 0.0000 ; a14U_MQXCD_col := 0.0300 ; a14R_MQXCD_col := 0.0100 ; a15M_MQXCD_col := 0.0000 ; a15U_MQXCD_col := 0.0000 ; a15R_MQXCD_col := 0.0000 ; systematic uncertainty random → new "target error table" ~ target 0

  11. " problem Nr. 4 ... triplett error table ~.v1 Ezios new error table ~.v2 (gaps filled) scaled error table via ref radius and optics D1 errors off scaled error table via ref radius and optics ~.target_0 error table ~.v2 / v1 ... the problem is the large multipole contributions of the new MQXC quarupole

  12. Error-Tables: Hunting the Mutlipoles collision, "uncertainty" ~.V2 ~target_0 / b1U_MQXCD_col := 0.0000 b2U_MQXCD_col := 0.0000 b3U_MQXCD_col := 0.2550 b4U_MQXCD_col := 0.1440 b5U_MQXCD_col := 0.1590 b6U_MQXCD_col := 0.4400 b7U_MQXCD_col := 0.0980 b8U_MQXCD_col := 0.0284 b9U_MQXCD_col := 0.0606 b10U_MQXCD_col := 0.2000 b11U_MQXCD_col := 0.0300 b12U_MQXCD_col := 0.0200 b13U_MQXCD_col := 0.0200 b14U_MQXCD_col := 0.0400 b15U_MQXCD_col := 0.0000 b1U_MQXCD_col := 0.0000 b2U_MQXCD_col := 0.0000 b3U_MQXCD_col := 0.4600 b4U_MQXCD_col := 0.6400 b5U_MQXCD_col := 0.4600 b6U_MQXCD_col := 1.7700 b7U_MQXCD_col := 0.2100 b8U_MQXCD_col := 0.1600 b9U_MQXCD_col := 0.0800 b10U_MQXCD_col := 0.2000 b11U_MQXCD_col := 0.0300 b12U_MQXCD_col := 0.0200 b13U_MQXCD_col := 0.0200 b14U_MQXCD_col := 0.0400 b15U_MQXCD_col := 0.0000 bn correction scheme: a3,b3,a4,b4,b6 a1U_MQXCD_col := 0.0000 a2U_MQXCD_col := 0.0000 a3U_MQXCD_col := 0.3220 a4U_MQXCD_col := 0.4110 a5U_MQXCD_col := 0.1220 a6U_MQXCD_col := 0.4840 a7U_MQXCD_col := 0.0800 a8U_MQXCD_col := 0.0670 a9U_MQXCD_col := 0.0800 a10U_MQXCD_col := 0.1000 a11U_MQXCD_col := 0.0300 a12U_MQXCD_col := 0.0200 a13U_MQXCD_col := 0.0100 a14U_MQXCD_col := 0.0300 a15U_MQXCD_col := 0.0000 a1U_MQXCD_col := 0.0000 a2U_MQXCD_col := 0.0000 a3U_MQXCD_col := 0.8900 a4U_MQXCD_col := 0.6400 a5U_MQXCD_col := 0.4600 a6U_MQXCD_col := 1.2700 a7U_MQXCD_col := 0.2100 a8U_MQXCD_col := 0.1600 a9U_MQXCD_col := 0.0800 a10U_MQXCD_col := 0.1400 a11U_MQXCD_col := 0.0300 a12U_MQXCD_col := 0.0200 a13U_MQXCD_col := 0.0100 a14U_MQXCD_col := 0.0300 a15U_MQXCD_col := 0.0000 an

  13. Error-Tables: random, collision ~.V2 ~target_0 / b1R_MQXCD_col := 0.0000 b2R_MQXCD_col := 0.0000 b3R_MQXCD_col := 0.8900 b4R_MQXCD_col := 0.6400 b5R_MQXCD_col := 0.4600 b6R_MQXCD_col := 1.2800 b7R_MQXCD_col := 0.2100 b8R_MQXCD_col := 0.1600 b9R_MQXCD_col := 0.0800 b10R_MQXCD_col := 0.0600 b11R_MQXCD_col := 0.0300 b12R_MQXCD_col := 0.0200 b13R_MQXCD_col := 0.0100 b14R_MQXCD_col := 0.0100 b15R_MQXCD_col := 0.0000 b1R_MQXCD_col := 0.0000 b2R_MQXCD_col := 0.0000 b3R_MQXCD_col := 0.4850 b4R_MQXCD_col := 0.1440 b5R_MQXCD_col := 0.3030 b6R_MQXCD_col := 0.6480 b7R_MQXCD_col := 0.1180 b8R_MQXCD_col := 0.0455 b9R_MQXCD_col := 0.0800 b10R_MQXCD_col := 0.0600 b11R_MQXCD_col := 0.0300 b12R_MQXCD_col := 0.0200 b13R_MQXCD_col := 0.0100 b14R_MQXCD_col := 0.0100 b15R_MQXCD_col := 0.0000 bn a1R_MQXCD_col := 0.0000 a2R_MQXCD_col := 0.0000 a3R_MQXCD_col := 0.3910 a4R_MQXCD_col := 0.3590 a5R_MQXCD_col := 0.1980 a6R_MQXCD_col := 0.3300 a7R_MQXCD_col := 0.1290 a8R_MQXCD_col := 0.1330 a9R_MQXCD_col := 0.0560 a10R_MQXCD_col := 0.0600 a11R_MQXCD_col := 0.0300 a12R_MQXCD_col := 0.0200 a13R_MQXCD_col := 0.0100 a14R_MQXCD_col := 0.0100 a15R_MQXCD_col := 0.0000 a1R_MQXCD_col := 0.0000 a2R_MQXCD_col := 0.0000 a3R_MQXCD_col := 0.8900 a4R_MQXCD_col := 0.6400 a5R_MQXCD_col := 0.4600 a6R_MQXCD_col := 0.3300 a7R_MQXCD_col := 0.2100 a8R_MQXCD_col := 0.1600 a9R_MQXCD_col := 0.0800 a10R_MQXCD_col := 0.0600 a11R_MQXCD_col := 0.0300 a12R_MQXCD_col := 0.0200 a13R_MQXCD_col := 0.0100 a14R_MQXCD_col := 0.0100 a15R_MQXCD_col := 0.0000 an

  14. col_19 " beta beat compensation" finally a good news D1 errors off horizonal detuning with amplitude 0.01 vertical detuning with amplitude 0.01 0 0 -0.01 10 -0.01 0 initial amplitude 0 10 initial amplitude

  15. Resumé: we need better quadrupoles we have to compensate a large number of multipoles in MQXC we need to think about D1 col19: D1 errors off triplett errors on, error table target 0 correction via b3,a3,b4,a4,b6 col9: D1 errors on triplett errors on, error table v1 no correction

  16. Further Plans: * identify the most critical multipoles * define tolerance limits for the new triplett quadrupole * re - include the D1 errors ... and compensate ? Conclusion ...

More Related