950 likes | 1.06k Views
Given Q=6.00x10 -3 C r=1.00m r=1.00m 2 k=9.0x10 9 N 2 m 2 /C 2. Find Force on the top right charge. Chapter 16 – Problem 13. Given Q=6.00x10 -3 C r=1.00m r=1.00m 2 k=9.0x10 9 N 2 m 2 /C 2. Find Force on the top right charge. Chapter 16 – Problem 13. Given Q=6.00x10 -3 C
E N D
Given Q=6.00x10-3C r=1.00m r=1.00m2 k=9.0x109 N2m2/C2 Find Force on the top right charge Chapter 16 – Problem 13
Given Q=6.00x10-3C r=1.00m r=1.00m2 k=9.0x109 N2m2/C2 Find Force on the top right charge Chapter 16 – Problem 13
Given Q=6.00x10-3C r=1.00m r=1.00m2 k=9.0x109 N2m2/C2 Find Force on the top right charge Chapter 16 – Problem 13
Given Q=6.00x10-3C r=1.00m r=1.00m2 k=9.0x109 N2m2/C2 Find Force on the top right charge Chapter 16 – Problem 13
Given Q=6.00x10-3C r=1.00m r=1.00m2 k=9.0x109 N2m2/C2 Find Force on the top right charge Chapter 16 – Problem 13
Chapter 16 – Problem 13 • F = KQQ / r2= 9.0x109 N2m2/C2(6.0x10-3)2 / (1.0m)2 • Fx=3.24x105N for top left on top right • Fy=3.24x105N for bottom right on top right • F=KQQ / r2=9.0x109 N2m2/C2(6.0x10-3)2/(1.0m 2 )2 • F=1.62x105N • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right
Chapter 16 – Problem 13 • F = KQQ / r2 = 9.0x109 N2m2/C2(6.0x10-3)2 / (1.0m)2 • Fx=3.24x105N for top left on top right • Fy=3.24x105N for bottom right on top right • F=KQQ / r2=9.0x109 N2m2/C2(6.0x10-3)2/(1.0m 2 )2 • F=1.62x105N • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right
Chapter 16 – Problem 13 • F = KQQ / r2 = 9.0x109 N2m2/C2(6.0x10-3)2 / (1.0m)2 • Fx=3.24x105N for top left on top right • Fy=3.24x105N for bottom right on top right • F=KQQ / r2=9.0x109 N2m2/C2(6.0x10-3)2/(1.0m 2 )2 • F=1.62x105N • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right
Chapter 16 – Problem 13 • F = KQQ / r2 = 9.0x109 N2m2/C2(6.0x10-3)2 / (1.0m)2 • Fx=3.24x105N for top left on top right • Fy=3.24x105N for bottom right on top right • F=KQQ / r2=9.0x109 N2m2/C2(6.0x10-3)2/(1.0m 2 )2 • F=1.62x105N • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right
Chapter 16 – Problem 13 • F = KQQ / r2 = 9.0x109 N2m2/C2(6.0x10-3)2 / (1.0m)2 • Fx=3.24x105N for top left on top right • Fy=3.24x105N for bottom right on top right • F=KQQ / r2=9.0x109 N2m2/C2(6.0x10-3)2/(1.0m 2 )2 • F=1.62x105N • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right
Chapter 16 – Problem 13 • F = KQQ / r2 = 9.0x109 N2m2/C2(6.0x10-3)2 / (1.0m)2 • Fx=3.24x105N for top left on top right • Fy=3.24x105N for bottom right on top right • F=KQQ / r2=9.0x109 N2m2/C2(6.0x10-3)2/(1.0m 2 )2 • F=1.62x105N • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right
Chapter 16 – Problem 13 • F = KQQ / r2 = 9.0x109 N2m2/C2(6.0x10-3)2 / (1.0m)2 • Fx=3.24x105N for top left on top right • Fy=3.24x105N for bottom right on top right • F=KQQ / r2=9.0x109 N2m2/C2(6.0x10-3)2/(1.0m 2 )2 • F=1.62x105N • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right
Chapter 16 – Problem 13 • F = KQQ / r2 = 9.0x109 N2m2/C2(6.0x10-3)2 / (1.0m)2 • Fx=3.24x105N for top left on top right • Fy=3.24x105N for bottom right on top right • F=KQQ / r2=9.0x109 N2m2/C2(6.0x10-3)2/(1.0m 2 )2 • F=1.62x105N • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right
Chapter 16 – Problem 13 • Fx=3.24x105N for top left on top right • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Total x = 4.39x105N • Fy=3.24x105N for bottom right on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right • Total y = 4.39x105N
Chapter 16 – Problem 13 • Fx=3.24x105N for top left on top right • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Total x = 4.39x105N • Fy=3.24x105N for bottom right on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right • Total y = 4.39x105N
Chapter 16 – Problem 13 • Fx=3.24x105N for top left on top right • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Total x = 4.39x105N • Fy=3.24x105N for bottom right on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right • Total y = 4.39x105N
Chapter 16 – Problem 13 • Fx=3.24x105N for top left on top right • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Total x = 4.39x105N • Fy=3.24x105N for bottom right on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right • Total y = 4.39x105N
Chapter 16 – Problem 13 • Fx=3.24x105N for top left on top right • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Total x = 4.39x105N • Fy=3.24x105N for bottom right on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right • Total y = 4.39x105N
Chapter 16 – Problem 13 • Fx=3.24x105N for top left on top right • Fx=1.62x105N cos45= 1.15x105N for bottom left on top right • Total x = 4.39x105N • Fy=3.24x105N for bottom right on top right • Fy=1.62x105N sin45= 1.15x105N for bottom left on top right • Total y = 4.39x105N
Chapter 16 – Problem 13 • Total x = 4.39x105N • Total y = 4.39x105N • total (4.39x105N)2 + (4.39x105N)2 • Total = 6.2x105N away from the center
Chapter 16 – Problem 13 • Total x = 4.39x105N • Total y = 4.39x105N • total (4.39x105N)2 + (4.39x105N)2 • Total = 6.2x105N away from the center
Chapter 16 – Problem 13 • Total x = 4.39x105N • Total y = 4.39x105N • total (4.39x105N)2 + (4.39x105N)2 • Total = 6.2x105N away from the center
Chapter 16 – Problem 13 • Total x = 4.39x105N • Total y = 4.39x105N • total (4.39x105N)2 + (4.39x105N)2 • Total = 6.2x105N away from the center
Given Q=1.6x10-19C m=9.11x10-31kg r=.53x10-10m k=9.0x109 N2m2/C2 G=6.67.0x10-11 N2m2/kg2 Find FE Fg Chapter 16 – Problem 15
Chapter 16 Problem 15 • F = KQQ / r2 = 9.0x109 N2m2/C2(1.6x10-19)2 • (.53x10-10m)2 • F=8.2x10-8N • F = Gmm / r2 = 6.67x10-11 N2m2/C2(9.11x10-31kg)2 • (.53x10-10m)2 • F=3.6x10-47N • Ratio=8.2x10-8N/3.6x10-47N=2.3x1039 times greater
Chapter 16 Problem 15 • F = KQQ / r2 = 9.0x109 N2m2/C2(1.6x10-19)2 • (.53x10-10m)2 • F=8.2x10-8N • F = Gmm / r2 = 6.67x10-11 N2m2/C2(9.11x10-31kg)2 • (.53x10-10m)2 • F=3.6x10-47N • Ratio=8.2x10-8N/3.6x10-47N=2.3x1039 times greater
Chapter 16 Problem 15 • F = KQQ / r2 = 9.0x109 N2m2/C2(1.6x10-19)2 • (.53x10-10m)2 • F=8.2x10-8N • F = Gmm / r2 = 6.67x10-11 N2m2/C2(9.11x10-31kg)2 • (.53x10-10m)2 • F=3.6x10-47N • Ratio=8.2x10-8N/3.6x10-47N=2.3x1039 times greater
Chapter 16 Problem 19 • Given • The charge must be placed beyond one of the charges in order for the net force to equal zero
Given Q=5.7x10-6C r=.25m+x Q2=3.5x10-6C r2=x k=9.0x109 N2m2/C2 Find X position a positive or negative particle would experience no force Chapter 16 Problem 19
Chapter 16 Problem 19 • F=KQQ / r2 • K(5.7x10–6 C)Q / (.25m + x)2 =K(3.5x10–6 C)Q / x2 • (5.7x10–6 C) / (.25m + x)2 =(3.5x10–6 C)/ x2 • X=.91m beyond the negative charge • The result is independent of the magnitude of the charge and sign of the particle to placed at .91 m
Chapter 16 Problem 19 • F=KQQ / r2 • K(5.7x10–6 C)Q / (.25m + x)2 =K(3.5x10–6 C)Q /x2 • (5.7x10–6 C) / (.25m + x)2 =(3.5x10–6 C)/ x2 • X=.91m beyond the negative charge • The result is independent of the magnitude of the charge and sign of the particle to placed at .91 m
Chapter 16 Problem 19 • F=KQQ / r2 • K(5.7x10–6 C)Q / (.25m + x)2 =K(3.5x10–6 C)Q / x2 • (5.7x10–6 C) / (.25m + x)2 =(3.5x10–6 C)/ x2 • X=.91m beyond the negative charge • The result is independent of the magnitude of the charge and sign of the particle to placed at .91 m
Chapter 16 Problem 19 • F=KQQ / r2 • K(5.7x10–6 C)Q / (.25m + x)2 =K(3.5x10–6 C)Q / x2 • (5.7x10–6 C) / (.25m + x)2 =(3.5x10–6 C)/ x2 • X=.91m beyond the negative charge • The result is independent of the magnitude of the charge and sign of the particle to placed at .91 m
Chapter 16 Problem 19 • F=KQQ / r2 • K(5.7x10–6 C)Q / (.25m + x)2 =K(3.5x10–6 C)Q / x2 • (5.7x10–6 C) / (.25m + x)2 =(3.5x10–6 C)/ x2 • X=.91m beyond the negative charge • The result is independent of the magnitude of the charge and sign of the particle to placed at .91 m
Chapter 16 Problem 19 • F=KQQ / r2 • K(5.7x10–6 C)Q / (.25m + x)2 =K(3.5x10–6 C)Q / x2 • (5.7x10–6 C) / (.25m + x)2 =(3.5x10–6 C)/ x2 • X=.91m beyond the negative charge • The result is independent of the magnitude of the charge and sign of the particle to placed at .91 m
Given q=1.6x10-19C m=9.11x10-31kg E=600 N/C Find a=?m/s2 Direction=? Chapter 16 Problem 21
Chapter 16 Problem 21 • F=qE= ma • F = (1.6x10-19C) (600N/C)=(9.11x10-31kg) a • a=1.04x1014m/s2 • Since the charge on the electron is negative and the direction of force and thus the acceleration is opposite to the direction of the electric field • The direction of the acceleration is independent of the velocity
Chapter 16 Problem 21 • F=qE= ma • F = (1.6x10-19C) (600N/C)=(9.11x10-31kg) a • a=1.04x1014m/s2 • Since the charge on the electron is negative and the direction of force and thus the acceleration is opposite to the direction of the electric field • The direction of the acceleration is independent of the velocity
Chapter 16 Problem 21 • F=qE= ma • F = (1.6x10-19C) (600N/C)=(9.11x10-31kg) a • a=1.04x1014m/s2 • Since the charge on the electron is negative and the direction of force and thus the acceleration is opposite to the direction of the electric field • The direction of the acceleration is independent of the velocity
Chapter 16 Problem 21 • F=qE= ma • F = (1.6x10-19C) (600N/C)=(9.11x10-31kg) a • a=1.04x1014m/s2 • Since the charge on the electron is negative and the direction of force and thus the acceleration is opposite to the direction of the electric field • The direction of the acceleration is independent of the velocity
Chapter 16 Problem 21 • F=qE= ma • F = (1.6x10-19C) (600N/C)=(9.11x10-31kg) a • a=1.04x1014m/s2 • Since the charge on the electron is negative and the direction of force and thus the acceleration is opposite to the direction of the electric field • The direction of the acceleration is independent of the velocity
Chapter 16 Problem 21 • F=qE= ma • F = (1.6x10-19C) (600N/C)=(9.11x10-31kg) a • a=1.04x1014m/s2 • Since the charge on the electron is negative and the direction of force and thus the acceleration is opposite to the direction of the electric field • The direction of the acceleration is independent of the velocity
Given q=1.6x10-19C m=9.11x10-31kg a=125m/s2 Find E=? N/C Chapter 16 Problem 27
Chapter 16 Problem 27 • F=qE= ma • F = (1.6x10-19C) E=(9.11x10-31kg) (125m/s2) • E=7.12x10-10N/C south • Because the charge on the electron is negative, the direction of force,and thus the acceleration, is opposite to the direction of the electric field, so the electric field is south
Chapter 16 Problem 27 • F=qE= ma • F = (1.6x10-19C) E=(9.11x10-31kg) (125m/s2) • E=7.12x10-10N/C south • Because the charge on the electron is negative, the direction of force,and thus the acceleration, is opposite to the direction of the electric field, so the electric field is south
Chapter 16 Problem 27 • F=qE= ma • F = (1.6x10-19C) E=(9.11x10-31kg) (125m/s2) • E=7.12x10-10N/C south • Because the charge on the electron is negative, the direction of force,and thus the acceleration, is opposite to the direction of the electric field, so the electric field is south
Chapter 16 Problem 27 • F=qE= ma • F = (1.6x10-19C) E=(9.11x10-31kg) (125m/s2) • E=7.12x10-10N/C south • Because the charge on the electron is negative, the direction of force,and thus the acceleration, is opposite to the direction of the electric field, so the electric field is south
Chapter 16 Problem 27 • F=qE= ma • F = (1.6x10-19C) E=(9.11x10-31kg) (125m/s2) • E=7.12x10-10N/C south • Because the charge on the electron is negative, the direction of force,and thus the acceleration, is opposite to the direction of the electric field, so the electric field is south
Chapter 16 Problem 27 • F=qE= ma • F = (1.6x10-19C) E=(9.11x10-31kg) (125m/s2) • E=7.12x10-10N/C south • Because the charge on the electron is negative, the direction of force,and thus theacceleration, is opposite to the direction of the electric field, so the electric field is south
Chapter 16 Problem 30a Given 9.0x10-6C 9.0x10-6C .05m .10m Find the Electric field strength at (0,.05m)