1 / 22

LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach

odelia
Download Presentation

LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach Dave Clark American Re-Insurance 2003 Casualty Loss Reserve Seminar

    2. LDF Curve-Fitting and Stochastic Reserving Goals: 1. Describe loss emergence in a mathematical model to assist in estimating needed reserves 2. Calculate the variability around the estimated reserves

    3. LDF Curve-Fitting and Stochastic Reserving

    4. LDF Curve-Fitting and Stochastic Reserving Growth Curve = Cumulative % of Ultimate G(t) = 1 / LDFt Inverse Power Curve: G(t|?,?) = 1 / [1+(?/t)?]

    5. LDF Curve-Fitting and Stochastic Reserving Why use a continuous curve? Smoothing of Development Pattern Interpolation & Extrapolation (including tail factor) Handle irregular evaluation dates (e.g., latest diagonal less than 12 months from penultimate diagonal) Avoid Over-Parameterization

    6. LDF Curve-Fitting and Stochastic Reserving Disadvantages of using a continuous curve: Need curve-fitting engine (answers not in “real time”) May not fit well unless the “right” curve form is used

    7. LDF Curve-Fitting and Stochastic Reserving Basic Model: Convert loss development triangle to an incremental basis For each “cell” of the triangle, we have ci,t = actual loss for AY i, between ages t and t-1 ?i,t = expected loss for AY i, between ages t and t-1

    8. LDF Curve-Fitting and Stochastic Reserving Two Methods for calculating the Expected Incremental Loss: 1. LDF Allows each accident year reserve to be estimated independently 2. Cape Cod Requires onlevel premium or other exposure base for each accident year

    9. LDF Curve-Fitting and Stochastic Reserving LDF Method: ?i,t = Ultimatei x [G(t|?,?) - G(t-1 |?,?)] n+2 Parameters: Ultimatei expected ultimate loss for accident year i ? “scale” parameter of G(t) ? “shape” parameter of G(t)

    10. LDF Curve-Fitting and Stochastic Reserving Cape Cod Method: ?i,t = Premiumi x ELR x [G(t|?,?) - G(t-1 |?,?)] 3 Parameters: ELR expected loss ratio for all years ? “scale” parameter of G(t) ? “shape” parameter of G(t) An onlevel Premiumi entry for each accident year must be supplied by the user

    11. LDF Curve-Fitting and Stochastic Reserving Why We Prefer the Cape Cod Method: Provides the model with more information (an exposure base in addition to the triangle) Requires estimation of fewer parameters More stable estimate of immature year(s)

    12. LDF Curve-Fitting and Stochastic Reserving And now for the Stochastic part…

    13. LDF Curve-Fitting and Stochastic Reserving Assumptions: The expected development in each cell, ?i,t is treated as the mean of a distribution. Each cell has a different mean, but assumed to have the same ratio of Variance/Mean, ?2.

    14. LDF Curve-Fitting and Stochastic Reserving Assumptions: The distribution for each cell follows an Over-dispersed Poisson with a constant Variance/Mean ratio. The model parameters are estimated using Maximum Likelihood Estimation (MLE).

    15. LDF Curve-Fitting and Stochastic Reserving What the heck is an Over-dispersed Poisson distribution? A discretized version of the aggregate loss amount, with the same shape as a standard Poisson - commonly used in Generalized Linear Models.

    16. LDF Curve-Fitting and Stochastic Reserving

    17. LDF Curve-Fitting and Stochastic Reserving Advantages of the Over-dispersed Poisson distribution: Sum of ODP is also ODP Can always match mean & variance Reflects mass point at zero Very convenient mathematics

    18. LDF Curve-Fitting and Stochastic Reserving Maximizing the Likelihood means solving for w and q that maximize the expression:

    19. LDF Curve-Fitting and Stochastic Reserving The Variance/Mean Ratio, ?2, is estimated by:

    20. LDF Curve-Fitting and Stochastic Reserving Why use Maximum Likelihood Estimation (MLE)? Familiar methods (LDF and Cape Cod) are exact MLE results MLE provides estimate of the uncertainty in the parameters (“delta method” in Loss Models)

    21. LDF Curve-Fitting and Stochastic Reserving Comments & Limitations Independent draws from Identical Distributions (the old “iid”) Sources of Variance not included…

    22. LDF Curve-Fitting and Stochastic Reserving Comments & Limitations Sources of Variance: Process Parameter or estimation error Mean Variance Model or specification error “State of the World” risk

    23. LDF Curve-Fitting and Stochastic Reserving Let’s look at an example…

More Related